วันอาทิตย์ที่ 28 กรกฎาคม พ.ศ. 2556

โมเด็ม


   โมเด็ม (Modem)
โมเด็ม เป็นอุปกรณ์ที่ใช้ในการแปลงสัญญาณดิจิทัลเป็นแอนะลอก และแปลงสัญญาณแอนะลอกกลับเป็นดิจิทัล มาจากคำว่า MOdelatory/DEModulator กระบวนการแปลงสัญญาณดิจิทัลเป็นแอนะลอก เรียกว่า มอดูเลชัน (Modlation) และกระบวนการแปลงสัญญาณแอนะลอกกลับเป็นดิจิทัล เรียกว่า ดีมอดูเลชัน (Demodulation)
โดยวิธีการจะเป็นการแปลงรูปทรงของคลื่นเพื่อให้สามารถรับรู้สารสนเทศแบบดิจิทัลได้เท่านั้น เช่น กรรมวิธีการเปลี่ยนแปลงความถี่ของคลื่น (frequency) รอบคลื่นปกติในคาบเวลาที่กำหนดให้อาจใช้แทนบิต 0 หรือกรรมวิธีเปลี่ยนแปลงช่วงกว้างของคลื่น (amplitude) อาจใช้แทนบิต 1 นั่นคือ ความสูงของคลื่นปกติอาจมีนัยนะแทน 1 ในขณะที่คลื่นที่ต่ำกว่าใช้แทน 0 เนื่องเพราะว่า คุณสมบัติของคลื่นย่อมไม่อาจแปลงรูปทางเป็นลักษณะเปิด/ปิด เพื่อแทนสัญญาณดิจิทัลได้อย่างตรงๆ
ดังนั้น จะพบว่าโมเด็มจึงมีลักษณะผสมผสานเพราะว่ามันไม่สามารถส่งผ่านสัญญาณดิจิทัลโดยคงคุณสมบัติทั้งหมดไว้ได้โดยสมบูรณ์ ดังนั้งจึงได้มีการพัฒนาทางเลือกใหม่ๆ เช่น ISDN, ADSL เป็นต้น






ประเภทของโมเด็ม แบ่งออกเป็น 3 ประเภทดังนี้
  โมเด็มภายนอก (External Modem) จะเป็นกล่องที่แยกออกมาต่างหากจากตัวเครื่องคอมพิวเตอร์ ซึ่งมีขนาดไม่ใหญ่นัก มักจะใช้สายเชื่อมต่อโมเด็มเข้ากับพอร์ตสื่อสาร ด้านหลังคอมพิวเตอร์ เช่น COM1,COM2,USB เป็นต้น ส่วนอีกสายหนึ่งจากโมเด็มจะเสียบเข้ากับแจ๊คโทรศัพท์ทั่วไป
ข้อดีของโมเด็มภายนอก ด้านความทนทาน, ความเสถียรภาพม สามารถโยกย้ายไปใช้กับคอมพิเตอร์เครื่องอื่นๆได้สะดวก สามารถตรวจสอบสถานะการทำงานของโมเด็มได้โดยตรง 
ข้อจำกัด ราคาแพงกว่าโมเด็มภายใน สิ้นเปลืองพื้นที่ใช้สอยบนโต๊ะ มักต้องการปลั๊กเสียบ AC
 โมเด็มภายใน (Internal Modem) มีลักษณะเป็นการ์ดวงจรเสียบเข้ากับสล๊อตบนแผงหลัก(Motherboard) ปัจจุบันเครื่องคอมพิวเตอร์ส่วนใหญ่มักถูกติดตั้งโมเด็มมาด้วย หรืออาจรวมอยู่ในแผงวงจรหลัก
ข้อดี  ไม่สิ้นเปลืองพื้นที่บนโต๊ะ ราคาประหยัด ไม่จำเป็นต้องใช้สายไฟฟ้า power เพื่อเสียบเข้ากับปลั๊ก AC เพิ่มเติม








ความเร็วในการส่งผ่านข้อมูลของโมเด็ม
โมเด็มที่มีความเร็วสูงย่อมส่งผ่านข้อมูลเสร็จได้เร็วกว่าและเสียค่าใช้จ่ายต่ำกว่าเมื่อใช้งานอินเทอร์เน็ตที่คิดค่าใช้จ่ายตามเวลาที่ใช้ไป ความเร็วในการส่งผ่านข้อมูลของโมเด็มจึงเป็นเรื่องสำคัญที่ควรคำนึงถึงเสมอ
ความเร็วในการส่งผ่านข้อมูลของโมเด็มถูกใช้ด้วยอัตราความเร็วซึ่งมีหน่วยวัดเป็นบิตต่อวินาที เรียกว่า bps (bit per second) หรือ Kps เช่น 56Kps อัตราความเร็วในการส่งผ่านข้อมูลของโมเด็ม อาจแบ่งเป็น 3 ระดับ ได้แก่ ช้า, เร็วปานกลาง และเร็วสูง 

1.           ช้า (Slow) มีอัตราความเร็วที่ประมาณ 1200, 2400 และ 4800 bps เอกสารแบบจดหมายจำนวน 10 หน้าสำหรับโมเด็มแบบ 2400bps สามารถส่งผ่านข้อมูลโดยใช้เวลาประมาณ 2.30 นาที จัดว่าช้าไม่ว่าจะใช้งานอะไรก็ตาม

2.           เร็วปานกลาง (moderately fast) มีอัตราความเร็วที่ประมาณ 9600 และ 14,400 bps เอกสารขนาดเดียวกันเมื่อส่งผ่านโมเด็มแบบ 9600 bps จะใช้เวลาประมาณ 38 วินาที โดยทั่วไป เครื่องแฟกซ์จะรับ-ส่งข้อมูลที่ความเร็วนี้

3.           เร็วสูง (high speed) มีอัตราความเร็วที่ 28,800 33,600 และ 56,000 bps เอกสารขนาดเดียวกันกับข้อ 1 เมื่อส่งผ่านด้วยโมเด็มแบบ 28.8 Kps จะใช้เวลาประมาณ 10 วินาที และใช้เวลา 5 วินาที สำหรับการใช้โมเด็ม 56 Kps






 ISDN Modem (Integrated Service Digital Network Modem) เป็นการสื่อสารส่งข้อมูลแบบสัญญาณดิจิทัลผ่านสายโทรศัพท์ธรรดา
  ISDN แบ่งเป็นสองช่องทางเพื่อให้สามารถใช้โทรศัพท์สนทนา เล่นอินเทอร์เน็ต หรือโอน ถ่ายข้อมูลในเวลาเดียวกันได้ด้วยอัตราความเร็ว 128 Kps เร็วกว่าโมเด็ม 28.8 Kps 4 เท่า และค่าใช้จ่ายในการติดตั้งสูง การใช้บริการจำเป็นต้องจัดเตรียมทั้งฮาร์ดแวร์ที่เป็นกล่องสำหรับเชื่อมต่อ ISDN หรืออะแดปเตอร์การ์ด เพื่อจะต่อเข้ากับไมโครคอมพิวเตอร์ นอกจากนั้น จะอยู่ภายในพื้นที่ให้บริการ ISDN ของหน่วยงานที่รับผิดชอบ เช่น องค์การโทรศัพท์หรือการสื่อสาร เป็นต้น

  ADSL Modem (Asymmetric Digital Subscriber Line Modem) เป็นโมเด็มที่ส่งผ่านข้อมูลด้วยความเร็วที่อัตราพันบิตต่อวินาที สายเช่าแบบดิจิทัล DSL จะใช้สายโทรศัพท์ธรรมดาในการส่งผ่านข้อมูลในอัตราเร็วที่ล้านบิตต่อวินาที ที่ประมาณ 1.5-8 Mbps ในการใช้ ADSL จำเป็นต้องมีอะแดปเตอร์, โมเด็มชนิดพิเศษ, และหมายเลขโทรศัพท์โมเด็มแบบ ADSL และจะแบ่งสายโทรศัพท์ออกเป็น 3 ช่องทางสำหรับเสียง, ข้อมูลส่งออก และข้อมูลรับเข้า
การเลือกซื้อโมเด็ม
นับถอยหลังกลับไปตั้งแต่ที่โมเด็มรุ่น Bell Dataphone 103 โมเด็มตัวแรกของโลกได้ถือกำเนิดขึ้นมา ในยุคนั้นก็สามารถสร้างความ ตื่นเต้นได้มาก ถึงแม้ว่าความเร็วในการส่งผ่านข้อมูล ในยุคนั้น จะไม่รวดเร็ว เหมือนกับในปัจจุบันที่มีความสามารถส่งผ่านข้อมูลได้ทั้ง ภาพ และเสียงด้วยความเร็วสูง การพัฒนาโมเด็มอาจจะไม่รวดเร็วเหมือนอุปกรณ์คอมพิวเตอร์ตัวอื่นๆ แต่เทคโนโลยีโมเด็มก็มีแต่จะ พัฒนาขึ้นเรื่อยๆ ไม่หยุดยั้ง

                อินเทอร์เน็ตนับว่าเป็นระบบเครือข่ายที่ใหญ่ที่สุดในโลก ที่สามารถย่อโลกทั้งโลกให้มาอยู่ในที่เดียวกัน พร้อมกันนั้นการพัฒนาในด้านเทคโนโลยี อินเทอร์เน็ตก็มี การเจริญเติบโตขึ้นมาอย่างรวดเร็ว มีการขยายวงกว้างสังคม ของอินเทอร์เน็ตมากขึ้นเรื่อยๆ และก็คงจะไม่มีวันมีที่สิ้นสุด ลองคิดเล่นๆ กันดูว่า ถ้าวันหนึ่งอินเทอร์เน็ตสามารถที่จะรวบรวมเอาความรู้ และข้อมูลทั้งหมดที่มนุษย์จะสามารถคิดค้นออกมาได้ รวมทั้งยังเป็นช่องทาง การสื่อสารหลักขนาดใหญ่ ที่ผู้คนในยุคนั้นใช้เชื่อมโยงเข้ากัน ไม่ว่าจะเป็นด้านธุรกิจ การค้าขาย หรือแม้กระทั่งความสัมพันธ์ของคนต่างชนชาติ ก็จะทำให้วงกว้างของระบบเครือข่าย อินเทอร์เน็ตก็มีแต่จะเจริญเติบโตและคงจะไม่มีที่สิ้นสุด แต่อย่างไรก็ตามการเจริญเติบโตของ อินเทอร์เน็ตก็คงจะเกิดขึ้นไม่ได้เลยถ้าขาดอุปกรณ์เชื่อมต่อเพื่อเข้า ถึง (Access) อย่างโมเด็ม (Modem)
                Modulation หรือเรียกอีกอย่างว่า Modem เป็นอุปกรณ์ที่ทีหน้าที่ในการแปลงสัญญาณอนาล็อกให้เปลี่ยนเป็นสัญญาณดิจิตอล เพื่อให้สามารถ รองรับการส่งสัญญาณข้อมูลที่เป็นทั้งภาพ และเสียงผ่านสายโทรศัพท ์พื้นฐานทั่วไป ซึ่งโดยปกติแล้วสายโทรศัพท์จะถูกออกแบบให้ สามารถส่งสัญญาณแบบ อนาล็อก หรือสัญญาณของเสียงเท่านั้น ดังนั้นโมเด็มก็เลยจะประกอบไปด้วยหน้าที่สำคัญ 3 ส่วนได้แก่ หนึ่งส่วนที่เปลี่ยนสัญญาณดิจิตอล ให้เป็นสัญญาณ อนาล็อกเพื่อให้สามารถส่งผ่านข้อมูลต่างๆ ไปยังสายโทรศัพท์ได้ สองส่วนที่เปลี่ยนสัญญาณอนาล็อก ที่ถูกส่งกลับมาจากสายโทรศัพท์ให้เปลี่ยนเป็นสัญญาณ ดิจิตอล เพื่อนำไปใช้งานต่อไป และสามส่วนที่ดูแล และความคุมการทำงาน Digital Interface
Internal Modem
External Modem
ประเภทของโมเด็ม สำหรับการแบ่งประเภทของโมเด็มนั้นจะสามารถแยกออกมาได้ 2 ลักษณะใหญ่ๆ นั้นคือความเร็วในการส่งผ่าน ข้อมูล และรูปแบบการติดตั้งใช้งาน
                สำหรับประเภทของความเร็วนั้น จะสามารถแบ่งออกได้ 4 ประเภทได้แก่ โมเด็มความเร็วต่ำ ที่นับว่าเป็นโมเด็มรุ่นแรกๆ ที่ออกมาโดยจะมีความเร็ว ตั้งแต่ 300bps จนถึง 4,800bps ประเภทที่สอง โมเด็มความเร็วปาน กลาง โดยโมเด็มระดับนี้จะสามารถส่งผ่านข้อมูลด้วยความเร็ว 9,600bps ถึง 14,400bps พร้อมทั้งยังเพิ่มความสามารถในการใช้งานต่างๆ มากขึ้นด้วย และเป็นโมเด็มที่เริ่มมีการใช้เทคนิคการผสมสัญญาณ พร้อมทั้งการรับส่ง ข้อมูล ในแบบ Full Duplex และ Half Duplex และสามโมเด็มความเร็วสูง สำหรับโมเด็มประเภทนี้จะมีอัตราการับส่งข้อมูลตั้งแต่ 19,200bps ถึง 28,800bps มีการใช้เทคนิคการผสมสัญญาณที่สลับซับซ้อนมากกว่า โมเด็ม ความเร็วปานกลาง และโมเด็มแบบที่สี่ซึ่งเป็นแบบที่กำลังนิยมใช้กันอยู่ในปัจจุบันนั้นคือ โมเด็ม ความเร็วสูงพิเศษ มีความเร็วในการส่งข้อมูลสูงสุดถึง 56,000bps หรือ 56Kbps ซึ่งเป็นโมเด็มที่มีการส่งสัญญาณ ในแบบดิจิตอล ความเร็วสูง และโมเด็ม ประเภทนี้จะมีผู้ให้บริการอินเทอร์เน็ต หรือ ISP เข้ามาเกี่ยวข้อง
                 สำหรับประเภทของรูปแบบการติดตั้งใช้งานนั้น จะมีอยู่ 3 ประเภท ประเภทแรกจะเป็นแบบInternal หรือแบบติดตั้งภายใน โมเด็มประเภทนี้ จะมีลักษณะเป็นการ์ด หรือแผงวงจร ที่จะติดตั้งภายในตัวเครื่องคอมพิวเตอร์ บริเวณสล็อต PCI ในปัจจุบัน ซึ่งข้อดีของโมเด็มลักษณะนี้ ก็ตรงที่จะประหยัด เนื้อที่ ภายนอก และมีราคาถูก แต่มักจะมีปัญหาตรงที่ติดตั้งใช้งานยุ่งยาก และตรวจดูสถานะการทำงานของโมเด็มได้ยาก แบบที่สองโมเด็มติดตั้ง ใช้งาน ภายนอก External ซึ่งจะมีรูปร่างเป็นสี่เหลี่ยม ประกอบไปด้วยอแด็ปเตอร์ที่ใช้เชื่อมต่อกับไฟฟ้าภายในบ้านเอง โดยไม่ต้องใช้ไฟร่วมกับเครื่องคอมพิวเตอร ์เหมือนโมเด็มแบบติดตั้งภายใน ทำให้การทำงานของ เครื่อง คอมพิวเตอร ์เสถียรมากกว่า และผู้ใช้ยังสามารถสังเกตการทำงานของโมเด็มจากไฟ แสดงสถานะ บริเวณตัวเครื่องได้ง่ายกว่าด้วย โมเด็มแบบภายนอกสามารถแยกอินเทอร์เฟซ หรือพอร์ตที่ใช้ในการเชื่อมต่อเข้ากับเครื่องคอมพิวเตอร์ได้สองแบบ ได้แก่ อินเทอร์เฟซแบบ Serial โดยโมเด็มแบบนี้จะเชื่อมต่อระหว่างโมเด็มและเครื่องคอมพิวเตอร์โดยใช้สาย RS-232 และจะมีอแด็ปเตอร์ที่คอยจ่ายไฟให้กับตัว โมเด็มด้วย ส่วนอินเทอร์เฟซแบบ USB ก็อย่างที่รู้ๆ อยู่ว่า อินเทอร์เฟซแบบ USB นั้นสามารถที่จะใช้ไฟจากเครื่องคอมพิวเตอร์โดยตรง จึงไม่จำเป็นที่จะต้อง มีอแด็ปเตอร์ แบบที่สามโมเด็มแบบการ์ด PCMCIA สำหรับโมเด็มประเภทนี้จะมีลักษณะเป็นการ์ดขนาดเล็ก ที่เมื่อเวลาจะ ใช้งาน จะต้องเสียบเข้ากับสล็อต PCMCIA ที่ปกติจะมีบนเครื่องคอมพิวเตอร์โน้ตบุก และโมเด็มประเภทนี้จะมีราคาที่สูงมากกว่าโมเด็ม Internal และ External

มาตรฐานโมเด็ม
                สำหรับมาตรฐานของโมเด็มนั้น จะถูกกำหนดมาโดย International Telecommunication Union หรือที่รู้จักกันดี ITU ซึ่งหน่วยนี้จะเป็น หน่วยงานที่องค์การสหประชาชาติตั้งขึ้น เพื่อเพิ่มความสามารถใหม่ให้กับโมเด็ม สำหรับมาตรฐานใหม่และในปัจจุบันก็เป็นที่นิยมกันอย่างมากก็คือมาตรฐาน V.90 ที่มีความรวดเร็วในการเชื่อมต่อที่ 56Kbps แต่หลังจากนั้นก็ได้มีการกำหนดมาตรฐานใหม่ล่าสุดเป็น V.92เพื่อเพิ่มความสามารถของโมเด็มให้ดีมากยิ่ง ขึ้น โดยความสามารถใหม่นั้นจะมีอยู่ 3 อย่างด้วยกันนั้นคือ Quick Connect, Modem on Hold และ PCM Upstream

Quick Connect
มีรูปแบบเพื่อให้สามารถทำการเชื่อมต่อกับผู้ให้บริการอินเทอร์เน็ต ISP ได้รวดเร็วขึ้นกว่าเดิม 50 เปอร์เซ็นต์
                
PCM Upstream
ช่วยให้การอัพโหลดข้อมูลต่างๆ ทำได้รวดเร็วมากขึ้น ซึ่งจะสามารถทำความเร็วได้สูงสุดถึง 48,000bps โดยที่มาตรฐาน V.90 เดิมทำได้เพียงแค่ 33,600bps
                
Modem on Hold
ท่านเคยสังเกตไหมครับว่าเวลาใช้งานอินเทอร์เน็ต แล้วถ้ามีสายโทรศัพท์เรียกเข้าในระหว่างใช้อินเทอร์เน็ต สายมักจะชอบ หลุด แต่ด้วยเทคโนโลยีนี้จะทำให้ท่านสามารถรับโทรศัพท ์เมื่อมีสายเรียก เข้า โดยที่ไม่ต้องออกจากการเชื่อมต่ออินเทอร์เน็ต แต่ท่านจะต้องขอใช้บริการรับ สายเรียกซ้อนจากผู้ให้บริการโทรศัพท์ที่ท่านใช้ และทาง ISP จะต้องเปิดให้บริการมาตรฐาน V.92 ด้วย
                 นอกจากโมเด็มในแบบอนาล็อกที่มีการส่งผ่านข้อมูลด้วยความเร็ว 56K ที่ปัจจุบันเป็นที่นิยมกันมากสำหรับคออินเทอร์เน็ตราคาถูก (ผมด้วย อิ..อิ) ปัจจุบันก็สามารถพัฒนาให้สามารถส่งผ่านข้อมูลในแบบดิจิตอลโดยตรง เพื่อให้การส่งผ่านข้อมูลไม่ว่าจะเป็นการดาวน์โหลดข้อมูล (downstream) หรืออัพ โหลดข้อมูล (upstream) ทำได้รวดเร็วมากขึ้นกว่าเดิม พร้อมกับรองรับการประชุมทางไกลทั้งภาพ และเสียง( VDO Conference) ที่กำลังนิยมใช้งานกัน ตามบริษัทด้วย สำหรับโมเด็มที่ออกมารองรับการใช้งานดังกล่าวนั้นก็จะมีออกมาใช้อยู่ 3 แบบ ได้แก่ Cable Modem, ISDN Modem และที่กำลังร้อนแรง ในขณะนี้ ADSL Modem
Cable Modem
Cable Modem
                 จะใช้การส่งสัญญาณข้อมูลผ่านระบบเครือข่ายต่างๆ โดยใช้สายนำสัญญาณ เช่น สายเคเบิลใยแก้วนำแสง ( Fiber Optic ) และสายโคแอคเชียล มาทำงานร่วมกันโดยจะเรียกระบบนี้ว่า HFC หรือ Hybrid Fiber Coaxial Network ความสามารถของเคเบิลโมเด็มก็จะมีตั้งแต่ สามารถดาวน์โหลด ข้อมูลได้สูงสุดถึง 10Mbps และอัพโหลดข้อมูลได้สูงสุดถึง 2Mbps และไม่มีปัญหาของสายหลุดในระหว่างการใช้งานเพราะ Cable Modem จะเป็นการ เชื่อมต่ออยู่ตลอดเวลา แต่ค่อนข้างจะมีพื้นที่ให้บริการที่จำกัดไม่ค่อยจะทั่วถึงถ้าเกิดมีจำนวนผู้ใช้มากขึ้นก็จะทำให้ความเร็วลดลง และไม่มีค่อยความปลอดภัย ของข้อมูลในระหว่างการใช้งานด้วย
ISDN Modem
ISDN Modem
                  หรือ Integrated Services Digital Network ได้รับการพัฒนาเพื่อมารองรับการส่งผ่านข้อมูลประเภทภาพ และเสียงผ่านอินเทอร์เน็ต เช่น การประชุมทางไกล, video streaming, Video Conference สามารถสนับสนุนความเร็วได้ตั้งแต่ 57.6Kbps - 128Kbps ซึ่งรูปแบบที่ให้บริการ สำหรับ ISDN นั้นจะมีอยู่ 2 ประเภทด้วยกัน คือ

                 ประเภทแรก Basic Access Interface หรือ BRI การเชื่อมต่อแบบนี้จะเหมาะกับผู้ใช้ในทุกๆ ระดับ ตั้งแต่ผู้ใช้ตามบ้านจนไปถึงองค์กรธุรกิจ ขนาดใหญ่ โดยสายสัญญาณที่นำมาใช้ก็จะเป็นสาย โทรศัพท์ธรรมดา ซึ่งจะเป็นการแลกเปลี่ยนกันระหว่างชุมสายของผู้ใช้บริการ และผู้ใช้ ISDN และ ISDN จะใช้ช่องสัญญาณทั้งหมด 2 ช่องโดยแต่ละช่องจะสามารถส่งผ่านข้อมูลได้สูงสุดที่ 64Kbps ฉะนั้นจึงรวมเป็น 128Kbps

                 ประเภทที่สอง Primary Rate Interface หรือ PRI ส่วนแบบนี้จะเหมาะกับองค์กรธุรกิจขนาดใหญ่ที่ต้องการช่องสัญญาณขนาดใหญ่เพื่อรอง รับกับข้อมูลจำนวนมาก ๆ ส่วนสายสัญญาณที่ใช้นั้นจะมีอยู่ 2 แบบ โดยแบบแรกนั้นจะใช้สาย Fiber Optic ซึ่งผู้ให้บริการมักจะติดตั้งสายประเภทนี้ไว้ตาม สถานที่สำคัญทางธุรกิจ เพราะความสามารถจากสาย Fiber Optic ที่สามารถรักษาความปลอดภัยในระหว่างการส่งผ่านข้อมูลได้มากกว่า สำหรับสายแบบ ที่สองนั้น ก็จะใช้กับพื้นที่บริการที่ไม่สามารถวางสาย Fiber Optic ได้ โดยจะใช้เป็นสายโทรศัพท์ หรือสายทองแดงแทน แต่จะติดตั้งอุปกรณ์ HDSL ISDN รูปแบบนี้จะมีจำนวนของช่องสัญญาณถึง 30 ช่อง โดยในแต่ละช่องก็จะมีขนาดความกว้างของช่องสัญญาณเหมือนกับประเภท BRI คือ 64Kbps ฉะนั้นเมื่อ รวมทั้งหมดก็จะได้ขนาดของช่องสัญญาณที่ส่งผ่านข้อมูลด้วยความเร็วสูงสุดถึง 2.048Mbps หรือประมาณ 2Mbps
ADSL Modem                        
Wireless ADSL Modem  

ADSL Modem
                 หรือ Asymmetric Digital Subscriber Line การเชื่อมต่อในแบบ ADSL นับเป็นนวัตกรรมการส่งข้อมูลสายโทรศัพท์พื้นฐานเป็นที่นิยมมาก ที่สุด โดยจะมีอัตราในการส่งข้อมูล ดาวน์โหลด สูงสุดที่ 8Mbps และอัพโหลดข้อมูลที่ 1Mbps เทคโนโลยีนี้ยังมีความสามารถในการแบ่ง รหัสสัญญาณข้อ มูลเสียงโดยการแยกความถี่ของเสียงที่มีความถี่ไม่เกิน 4KHz ออกจากความถี่ของสัญญาณข้อมูลที่มีความถี่ตั้งแต่ 2MHz โดยอุปกรณ์ที่ทำหน้าที่ ในการแบ่ง ความถี่นี้จำเป็นที่จะต้องนำมาติดตั้งร่วมกับ ADSL โมเด็ม อุปกรณ์ที่ว่านี้เรียกว่า Pots Splitter ซึ่งจะติดตั้งอยู่ทั้งชุมสายโทรศัพท์และผู้ใช้ ดังนั้นผู้ใช้จึง สามารถใช้โทรศัพท ์ร่วมกันได ้ใน ระหว่างที่ใช้งานอินเทอร์เน็ต Pots Splitter จะมีลักษณะคล้ายกับเต้าเสียบโทรศัพท์ตามบ้านทั่วๆไปที่จะมีพอร์ต คอนเน็ก เตอร์หัว RJ-11อยู่ 2 ช่อง โดยจะมีช่องหนึ่งไว้ให้สำหรับเสียบเข้ากับโมเด็ม และช่องที่เหลืออีกช่องเอา ไว้ให้สำหรับเสียบเข้ากับเครื่องโทรศัพท์

                  อะไรที่ทำให้คออินเทอร์เน็ตทั้งหลายในปัจจุบันจึงนิยมติดตั้งใช้งานอินเทอร์เน็ตในแบบ ADSL อย่างแรกก็คือความสะดวกสบายในการเชื่อมต่อ ผู้ใช้สามารถที่ Access ใช้งานทันท ีโดยที่ไม่ต้องหมุนโทรศัพท์เหมือนโมเด็ม ISDN เพราะ ADSLจะทำการเชื่อมต่ออยู่ตลอดเวลา (Always-On-Access) สายสัญญาณ ADSL ยังเป็นอิสระในการใช้งานโดยที่ไม่ได้ไปแชร์สายสัญญาณเหมือน Cable Modem นั้นผู้ใช้จึงมั่นใจในเรื่องความปลอดภัย ได้
อินเทอร์เฟซต่างๆด้านหลัง ADSL Modem           

Port Splitter อุปกรณ์ที่ใช้สำหรับแยกสัญญาณความถี่
ประเภท และแนวทางในการเลือกซื้อ ADSL โมเด็ม
สำหรับ ADSL โมเด็มจะมีให้เลือกใช้อยู่ 2 ประเภทเหมือนกับโมเด็มในแบบอนาล็อก คือ แบบที่ติดตั้งใช้งานภายใน และแบบที่ติดตั้งใช้งานภายนอก

                 แบบที่ติดตั้งใช้งานภายใน โมเด็มแบบนี้จะติดตั้งกับสล็อต PCI ภายในเครื่องคอมพิวเตอร์ ซึ่งลักษณะที่เหมือนกับโมเด็มอนาล็อกทั่วๆไป แบบนี้จะ เหมาะกับผู้ใช้ที่ต้องการประหยัดเนื้อที่การทำงานภายนอก และประหยัดค่าใช้จ่าย

                 แบบที่ติดตั้งใช้งานภายนอก ADSL โมเด็มแบบนี้จะมีอินเทอร์เฟซอยู่ 2 แบบ คือ แบบแรกนั้นจะเป็นอินเทอร์เฟซ USB ส่วนแบบที่สองจะเป็น อินเทอร์เฟซแบบ RJ-45 หรือพอร์ตแลน ซึ่งโมเด็มทั้งสองแบบก็จะมีข้อดีและข้อเสียที่แตกต่างกันไป อย่างเช่นแบบ USB จะติดตั้งใช้งานได้ง่าย มีราคาถูก แต่ถ้าต้องการจะแชร์เพื่อให้เครื่องอื่นๆ ได้ใช้อินเทอร์เน็ตด้วยจะทำได้อยากเพราะโมเด็มแบบ USB ไม่ได้ทำการติดตั้งพอร์ต RJ-45 มาให้ไว้เชื่อมต่อระบบ แลน แต่ถ้านำไปใช้เชื่อมต่อเพียงแค่เครื่องเดียวก็น่าจะเป็นการประหยัดค่าใช้จ่ายมากกว่าที่จะนำ ADSL โมเด็มที่สนับสนุนอินเทอร์เฟซ RJ-45 มาติดตั้งใช้งาน ปัจจุบันความนิยมใช้ ADSL โมเด็มเริ่มลดน้อยลงโดยเฉพาะผู้ใช้ตามองค์กร หรือบริษัทที่ต้องการความปลอดภัยข้อมูลมักจะนิยมเอา ADSL เราท์เตอร์มาใช้ งานแทนกันมากขึ้น ก่อนที่ ADSL เราท์เตอร์ ยังไม่ได้มีการพัฒนานำออกมาใช้นั้น ผู้ใช้พวกนี้ส่วนมากจะเชื่อมต่อเราท์เตอร์กับโมเด็มเข้าด้วยกันเพื่อกลั่นกรอง ข้อมูลต่างๆ ก่อนที่จะมีการส่งผ่านเข้ามาในระบบภายใน เพื่อป้องกันภัยอันตรายต่างๆ จากภายนอกส่งผ่านเข้ามาทางอินเทอร์เน็ต ADSL เราท์เตอร์นั้นค่อนข้าง จะมีราคาที่สูงกว่า ADSL โมเด็มอยู่มาก เพราะจากอินเทอร์เฟซ RJ-45 ที่สามารถติดตั้งมาให้ได้มากกว่าสูงสุดถึง 4 พอร์ต แถมบ้างตัวยังสนับสนุน Auto-Uplink ที่จะเชื่อมต่อไปสู่อุปกรณ์ต่างๆ เช่น เราท์เตอร์ ฮับ สวิทซ์ จากพอร์ตใดก็ได้ สังคมระบบเครือข่ายไร้เริ่มเข้ามามีบทบาทมากขึ้น และก็เริ่มจะมีความ นิยมกันมากขึ้นเรื่อยๆ ด้วย ดังนั้น ADSL เราท์เตอร์ในปัจจุบันจึงถูกพัฒนาให้สามารถทำงานแบบไร้สายได้ด้วย พร้อมที่ยังรองรับการเชื่อมต่อแบบอีเทอร์เน็ต ใช้สายแบบเดิมด้วย โดยจะมีมาตรฐานไร้สายที่รองรับการใช้งาน IEEE 802.11b ที่เป็นมาตรฐานเดิม และเป็นที่นิยมใช้งานกันมากในบ้านเรา และ IEEE 802.11g ที่เป็นมาตรฐานไร้สายใหม่ที่กำลังเริ่มเป็นที่นิยมมากขึ้นเรื่อย ซึ่งการทำงานของทั้งสองแบบจะทำงานความถี่ 2.4GHz สำหรับราคาแบบไร้สายนี้จะ สูงมากดังนั้นถ้าไม่จำเป็นที่จะใช้งานจริงๆ ก็น่าจะหันไปเล่นแบบแบบใช้สายก่อนก็จะประหยัดเงินในกระเป๋าได้มากครับ

วันพฤหัสบดีที่ 25 กรกฎาคม พ.ศ. 2556

การ์ดแสดงผล

Display Card (การ์ดแสดงผล)

          หลัก การทำงานพื้นฐานของการ์ดแสดงผลจะเริ่มต้นขึ้น เมื่อโปรแกรมต่างๆ ส่งข้อมูลมาประมวลผลที่ซีพียูเมื่อซีพียู ประมวลผล เสร็จแล้ว ก็จะส่งข้อมูลที่จะนำมาแสดงผลบนจอภาพมาที่การ์ดแสดงผล จากนั้นการ์ดแสดงผล ก็จะส่งข้อมูลนี้มาที่จอภาพ ตามข้อมูลที่ได้รับมา การ์ดแสดงผลรุ่นใหม่ๆ ที่ออกมาส่วนใหญ่ ก็จะมีวงจรในการเร่งความเร็ว การแสดงผลภาพสามมิติ และมีหน่วยความจำมาให้มากพอสมควร

หน่วยความจำ
          การ์ด แสดงผลจะต้องมีหน่วยความจำที่เพียงพอในการใช้งานเพื่อใช้สำหรับเก็บข้อมูล ที่ได้รับมาจากซีพียู และสำหรับการ์ดแสดงผลบางรุ่น ก็สามารถประมวลผลได้ภายในตัวการ์ดโดยทำหน้าที่ในการประมวลผลภาพแทนซีพียูไป เลยช่วยให้ซีพียูมีเวลาว่างมากขึ้นทำงานได้เร็วขึ้น

          เมื่อ ได้รับข้อมูลจากซีพียูมาแล้ว การ์ดแสดงผลก็จะเก็บข้อมูลที่ได้รับมาไว้ในหน่วยความจำส่วนนี้นี่เอง ถ้าการ์ดแสดงผลมีหน่วยความจำมากๆ ก็จะรับข้อมูลมาจากซีพียูได้มากขึ้น ช่วยให้การแสดงผลบนจอภาพ มีความเร็วสูงขึ้น และหน่วยความจำที่มีความเร็วสูงก็ยิ่งดี เพราะจะมารถรับส่งข้อมูลได้เร็วขึ้นยิ่งถ้าข้อมูลที่มาจากซีพียูมีขนาดใหญ่ ก็ยิ่งต้องใช้หน่วยความจำที่มีขนาดใหญ่ๆ เพื่อรองรับการทำงานได้โดยไม่เสียเวลา ข้อมูลที่มีขนาดใหญ่ๆ นั่นก็คือข้อมูลของภาพที่มีสีและความละเอียดของภาพสูงๆ

ความละเอียดในการแสดงผล
          การ์ด แสดงผลที่ดีจะต้องมีความสามารถในการแสดงผลในความละเอียดสูงๆ ได้เป็นอย่างดี ความละเอียดในการ แสดงผลหรือ Resolution ก็คือจำนวนของจุดหรือพิเซล (Pixel) ที่การ์ดสามารถนำไป แสดงบนจอภาพได้ จำนวนจุดยิ่งมากก็ทำให้ภาพที่ได้มีความคมชัดขึ้นส่วนความละเอียดของสีก็คือ ความสามารถในการแสดงสีได้ในหนึ่งจุด จุดที่พูดถึงนี้ก็คือจุดที่ใช้ในการแสดงผลในหน้าจอ เช่น โหมดความละเอียด 640x480 พิกเซล ก็จะมีจุดเรียงตามแนวนอน 640 จุด และจุดเรียงตามแนวตั้ง 480 จุด

          โหมด ความละเอียดที่เป็นมาตราฐานในการใช้งานปกติก็คือ 640x480 แต่การ์ดแสดงผลส่วนใหญ่ สามารถที่จะแสดง ผลได้หลายๆ โหมด เช่น 800x600, 1024x768 และการ์ดที่มีประสิทธิภาพสูงก็จะ สามารถแสดงผลในความละเอียด 1280x1024 ส่วนความละเอียดสก็มี 16 สี, 256 สี, 65,535 สี และ 16 ล้านสีหรือมักจะเรียกกันว่า True Color

อัตราการรีเฟรชหน้าจอ
          การ์ด แสดงผลที่มีประสิทธิภาพ จะต้องมีอัตราการรีเฟรชหน้าจอได้หลายๆ อัตรา อัตราการรีเฟรชก็คือ จำนวนครั้งในการกวาดหน้าจอใหม่ในหนึ่งวินาทีถ้าหากว่าอัตรารีเฟรชต่ำจะทำให้ ภาพบนหน้าจอมีการกระพริบ ทำให้ผู้ที่ใช้งานคอมพิวเตอร์เกิดอาการล้าของกล้ามเนื้อตาและอาจทำให้เกิด อันตรายกับดวงตาได้

          อัตราการรีเฟรชในปัจจุบันอยู่ที่ 72 เฮิรตซ์ ถ้าใช้จอภาพขนาดใหญ่อัตรารีเฟรชยิ่งต้องเพิ่มมากขึ้นอัตรา
รีเฟรชยิ่งมากก็ยิ่งดี

ปัญหาและการแก้ปัญหาที่เกิดจาก
 Display Card



VGA-AGP
VGA-PCI
- ปัญหา เคลื่อนย้ายเครื่องแล้วเปิดเครื่องได้ยินเสียงทำงาน แต่หน้าจอไม่มีภาพ

สาเหตุ
          การ์ดจอแบบ AGP จะมีสล็อตสำหรับใส่ที่พอดีหรือตึงมากเราติดตั้งการ์ดเข้ากับสล็อตจะต้องดันให้สุดและขันน็อตเข้ากับตัวเคส ซึ่งในช่วงนี้

วิธีการแก้ปัญหา
          ให้เปิดฝาเครื่องออกมาตรวจดูหากพบว่าตัวการ์ดหลวมหลุดให้ดันการ์ดกลับเข้าไปในสล็อตให้แน่นเหมือนเดิม โดยไม่ต้องคลายน็อต (เพราะจะกระดกหลุดออกมาอีก) หากพบว่าหลายวงจรที่ขาการ์ดสกปรกให้ถอด 
ออกมาแล้วใช้ยางลบดินสอทำความสะอาดแล้งจึงใส่กลับเข้าไปใหม่ ก็คงจะใช้การได้เหมือนเดิม

- ปัญหา เล่นเกมบางทีภาพกระตุก แฮงค์ค้าง


สาเหตุ
          ปัญหานี้เกิดได้หลายสาเหตุเช่น อาจเป็นเพราะการ์ดจอที่ใช้อยู่มีประสิทธิภาพไม่ดีพอไม่สามารถเล่นเกมที่ใช้กำลังเครื่องมากได้ บางครั้งอาจเกิดจากพัดลมระบายความร้อนบนชิปกราฟิคสกปรกทำให้ หมุนช้าลง หรือไม่หมุนเลยส่วนสาเหตุที่แย่ที่สุดคือ ชิปกราฟิคมีปัญหาหรือเสียซึ่งคงต้องเปลี่ยนการ์ดจอใหม่เลย

วิธีการแก้ปัญหา
          1.เปิด ฝาเครื่องออกและลองเปิดเครื่องตรวจดูว่าพัดลมระบายความร้อนของชิปกราฟิคหมุน หรือไม่ หากไม่หมุนต้องดูว่าพัดลมสกปรกมีคราบฝุ่นละอองเกาะติดอยู่หรือไม่ ให้ใช้ยาสเปรย์ฉีดพร้อมกับใช้ไม้สำลีเช็ดให้สะอาด
          2.หากพบว่าพัดลมระบายความร้อนชิปกราฟิคเสีย ให้ซื้อมาเปลี่ยนใหม่ หลังจากเปลี่ยนพัดลมตัวใหม่ก็คงเล่นเกมได้มันสะใจขึ้น

ปัญหา การ์ดจอ Onpoard เสีย
          ปัญหานี้จะแสดงอาการออกมาในลักษณะเปิดเครื่องได้เห็นไฟเข้าเครื่องทำงานปกติแต่หน้าจอจะไม่มีภาพอะไรเลย ผู้ใช้หลายคนนึกว่าเมนบอร์ดเสีย จึงไปหาซื้อเมนบอร์ดมาเปลี่ยนใหม่ทำให้เสียเงินไปโดยใช่เหตุ
สาเหตุ
          ปัญหานี้สาเหตุเป็นเพราะระบบแสดงผลของชิปเซ็ตบนเมนบอร์ดเสีย ทำให้ไม่มีภาพปรากฎบนหน้าจอ
วิธีการแก้ปัญหา
          ในการแก้ไขปัญหาก็ให้ทำการจัมเปอร์บนเมนบอร์ดเป็น Disable หรือกำหนดค่าในไบออสให้เป็น Disable ขึ้นอยู่กับรุ่นของเมนบอร์ด แล้วนำการ์ดจอมาติดตั้งลงในสล็อต AGP แทน หากเป็นรุ่นไม่มี สล็อต AGP ก็คงต้องหาซื้อการ์ด PCI มาติดตั้งแทนเมนบอร์ดบางรุ่นอาจจะพบและทำงานกับการ์ดจอที่ติดตั้งเข้าไปโดยไม่ต้อง Disable ในจัมเปอร์หรือไบออสแต่อย่างใด สำหรับขั้นตอนการยกเลิกใช้งานการ์ดจอ Onboard โดยการกำหนดจัมเปอร์มีขั้นตอนดังนี้
          1. เปิดฝาเครื่องออกให้สังเกตจัมเปอร์บนเมนบอร์ดที่มีตัวอักษรกำกับว่า VGA หรือให้ดูจากคู่มือเมนบอร์ด
          2. เมื่อพบแล้วให้เปลี่ยนจัมเปอร์ ซึ่งอาจเป็นการถอดออกหรือเปลี่ยนขา จากขา 1,2 เป็น 2,3 อย่างใดอย่างหนึ่งก็ได้
          3. ให้ติดตั้งการ์ดจอใหม่ลงเครื่อง ปิดฝาและเปิดเครื่อง หลังจากนั้นให้ลงไดรเวอร์ให้เรียบร้อยก็ใช้งานได้

การติดตั้งการ์ดจอ
          1. ก่อนที่จะทำการใดๆ ให้คุณกราวน์ตัวเองก่อน โดยการเอามือไปแตะที่ตัวเคส
          2. พยายามนำเอาสายไฟที่กีดขวางอยู่ออกไปทางด้านข้าง ถ้าไม่จำเป็นอย่าถอดออกมา เพราะคุณอาจจะลืมไปว่า คุณถอด ออกมาจากที่ใด
          3. ให้ตรวจดูสล็อตสำหรับติดตั้งการ์ดจอโดยการ์ดรุ่นใหม่ จะใช้สล็อต AGP กันหมดแล้ว จุดสังเกตคือ เป็นสล็อตสี น้ำตาลเข้มที่อยู่ด้านบนใกล้กับซีพียู (ถ้าเป็นสล๊อต PCI จะเป็นสีขาว)
          4. ใน การจับการ์ดให้คุณจับในบริเวณที่เป็นพลาสติก ห้ามจับในบริเวณที่เป็นแถบทองแดงด้านล่างของการ์ด เพราะฝุ่นผง ที่มือคุณอาจจะไปทำให้ทางเดินไฟฟ้าสะดุดได้
          5. เสียบตัวการ์ดลงไปตรงๆ
          6. ค่อยๆ กดตัวการ์ดลงไปเบาๆ ถ้ากดแล้วไม่ลงอย่าพยายามฝืน ให้ถอดออกแล้วเสียบลงไปใหม่
          7. ใช้ไขควงขันน็อตให้เรียบร้อย


หน่วยความจำ

 ก่อนที่จะศึกษาว่าคอมพิวเตอร์ เก็บข้อมูลได้อย่างไร จะต้องทราบก่อนว่าสื่อสำหรับเก็บข้อมูลนั้นมีอะไรบ้าง เนื่องจากคอมพิวเตอร์แปลงคำสั่งและข้อมูลต่าง ๆ เก็บไว้ในรูปแบบของเลขฐานสองคือ 0 และ 1 ทั้งสิ้น โดยที่ตัวอักษร ตัวเลข และสัญลักษณ์พิเศษต่าง ๆ จะถูกแทนด้วยกลุ่มของตัวเลขเลขฐานสอง และเนื่องจากแรมเป็นหน่วยความจำที่ไม่ได้เก็บข้อมูลอย่างถาวร ถ้าปิดเครื่องหรือไฟดับข้อมูลก็หายไป ดังนั้นถ้าผู้ใช้มีข้อมูลอยู่ในแรมก็จะต้องทำการจัดเก็บข้อมูล โดยย้ายข้อมูลจากหน่วยความจำไปไว้ในหน่วยเก็บข้อมูลสำรอง เนื่องจากสามารถเก็บข้อมูลได้อย่างถาวร ไม่มีการเปลี่ยนแปลงนอกจากผู้ใช้เป็นผู้สั่ง รวมทั้งสามารถเก็บข้อมูลจำนวนมากได้ และที่สำคัญหน่วยเก็บข้อมูลสำรองจะมีราคาถูกมากเมื่อเทียบกับหน่วยความ จำหลัก ทำให้คอมพิวเตอร์ในปัจจุบันจะมีหน่วยเก็บข้อมูลสำรองซึ่งสามารถเก็บข้อมูล จำนวนมาก ความเร็วในการอ่านและบันทึกข้อมูลของหน่วยเก็บข้อมูลสำรองจะต่ำกว่าหน่วย ความจำหลัก ดังนั้นจึงควรทำงานให้เสร็จก่อน จึงย้ายข้อมูลนั้นไปไว้ในหน่วยเก็บข้อมูลสำรอง 
        ในปัจจุบันมีหน่วยเก็บข้อมูลให้เลือกใช้หลายชนิด ดังต่อไปนี้
1.เทป (Tape)  
เทปแม่เหล็ก (Magnetic Tape)
Sorry, your browser doesn't support Java(tm).
        เป็น หน่วยเก็บข้อมูลที่ใช้กันมานานตั้งแต่คอมพิวเตอร์ยุคที่หนึ่งและยุคที่สอง ปัจจุบันได้รับความนิยมน้อยลง เทปแม่เหล็กมีหลักการทำงานคล้ายเทปบันทึกเสียง แต่เปลี่ยนจากการเล่น (Play) และบันทึก (Record ) เป็นการอ่าน (Read) และเขียน (Write) แทนในเครื่องเมนเฟรมเทปที่ใช้จะเป็นแบบม้วนเทป (Reel-to-reel) ซึ่งเป็นวงล้อขนาดใหญ่ ในเครื่องมินิคอมพิวเตอร์จะใช้คาร์ ทริดจ์เทป (Cartridge tape) ซึ่งมีลักษณะคล้ายวิดีโอเทป ส่วนในเครื่องไมโครคอมพิวเตอร์จะใช้ตลับเทป (Cassette tape) ซึ่งมีลักษณะเหมือนเทปเพลง เทปทุกชนิดที่กล่าวมามีหลักการทำงานคล้ายกับเทปบันทึกเสียง คือจะอ่านข้อมูลตามลำดับก่อนหลังตามที่ได้บันทึกไว้ เรียกหลักการนี้ว่าการเข้าถึงข้อมูลตามลำดับ (Sequential access) การทำงานลักษณะนี้จึงเป็นข้อเสียของการใช้เทปแม่เหล็กบันทึกข้อมูล คือทำให้อ่านข้อมูลได้ช้า เนื่องจากต้องอ่านข้อมูลในม้วนเทปไปเรื่อย ๆ จนถึงตำแหน่งที่ต้องการ ผู้ใช้จึงนิยมนำเทปแม่เหล็กมาสำรองข้อมูล ส่วนข้อมูลที่กำลังใช้งานจะถูกเก็บอยู่บนหน่วยเก็บข้อมูลแบบ จานแม่เหล็ก (Magetic Disk) เพื่อให้เรียกใช้ได้ง่าย และนำเฉพาะข้อมูลที่สำคัญและไม่ถูกเรียกใช้บ่อยมา เก็บสำรอง (Backup) ไว้ในเทปแม่เหล็ก เพื่อป้องกันการสูญหายของข้อมูล
        ข้อดีของเทป แม่เหล็กคือสามารถบันทึก อ่าน และลบกี่ครั้งก็ได้ รวมทั้งมีราคาต่ำ นอกจาก นี้ยังสามารถบันทึกข้อมูลจำนวนมาก ๆ ได้อย่างรวดเร็ว ในสื่อที่มีขนาดไม่ใหญ่มากนัก ความจุของเทปแม่เหล็กจะมีหน่วยเป็น ไบต์ต่อนิ้ว (Byte per inch) หรือ บีพีไอ (bpi) ซึ่งหมายถึงจำนวนตัว อักษรที่เก็บในเทปยาวหนึ่งนิ้ว หรือเรียกได้อีกอย่างว่าความหนาแน่นของเทปแม่เหล็ก เทปแม่เหล็กที่มีความหนาแน่นต่ำ จะเก็บข้อมูลได้ประมาณ 1,600 บีพีไอ ส่วนเทปแม่เหล็กที่มีความหนาแน่นสูง จะเก็บข้อมูลได้ประมาณ 6,250 บีพีไอ นอกจากนี้ จะมีเทปแม่เหล็กรุ่นใหม่ ๆ คือ DAT (Digital Audio Tape) ซึ่งมีขนาดใหญ่กว่าเครดิตการ์ดเล็กน้อย แต่สามารถจุข้อมูลได้ 2-5 จิกะไบต์ และ R-DAT ซึ่งสามารถเก็บข้อมูลได้มากกว่า 14 จิกะไบต์ บนเทปที่ยาว 90 เมตร
        การที่เทปแม่เหล็กยังคงได้รับความนิยมให้เป็นสื่อที่เก็บสำรองข้อมูล ก็เพราะความเร็ว ความจุข้อมูล และราคานั่นเอง
 

2. จานแม่เหล็ก 
(Magnetic Disk)
        จานแม่เหล็ก สามารถเก็บข้อมูลได้เป็นจำนวนมาก และมีคุณสมบัติในการ เข้าถึงข้อมูลโดยตรง (Direct access) ไม่จำเป็นต้องอ่านไปตามลำดับเหมือนเทป จานแม่เหล็กจะต้องใช้คู่กับ ตัวขับจานแม่เหล็ก หรือ ดิสก์ไดร์ฟ (Disk drive) ซึ่งเป็นอุปกรณ์สำหรับอ่านเขียนจานแม่เหล็ก (มีหน้าที่คล้ายกับเครื่องเล่นเทป) จานแม่เหล็กเป็นสื่อที่ใช้หลักการของการ เข้าถึงข้อมูลแบบสุ่ม (Random-access) นั่นคือ ถ้าต้องการข้อมูลลำดับที่ 52 หัวอ่านก็จะตรงไปที่ข้อมูลนั้นและอ่านข้อมูลนั้นขึ้นมาใช้งานทันที ทำให้มีความเร็วในการอ่านและบันทึกที่สูงกว่าเทปมาก หัวอ่านของดิสก์ไดร์ฟเรียกว่า หัวอ่านและบันทึก (read/write head) เมื่อผู้ใช้ใส่แผ่นจานแม่เหล็กเข้าไปในดิสก์ ไดร์ฟ แผ่นจานแม่เหล็กก็จะเข้าไปสวมอยู่ในแกนกลม ซึ่งเป็นที่ยึดสำหรับหมุนแผ่นจานแม่เหล็ก จากนั้นหัวอ่านและบันทึกก็จะอ่าน อิมพัลส์ของแม่เหล็ก (Magnetic impulse) บนแผ่นจานแม่เหล็กขึ้นมาและแปลงเป็นข้อมูลส่งเข้าคอมพิวเตอร์ต่อไป หัวอ่านและบันทึกสามารถเคลื่อนย้ายในแนวราบเหนือผิวหน้าของแผ่นจานแม่เหล็ก ถ้าใช้แผ่นจานแม่เหล็กที่มีผิวหน้าต่างกัน ก็ต้องใช้หัวอ่านและบันทึกต่างชนิดกันด้วย นอกจากนี้ เนื่องจากดิสก์ไดร์ฟนั้นเป็นเพียงอุปกรณ์เครื่องกลชนิดหนึ่งซึ่งอาจเกิด ปัญหาขึ้นได้ จึงจำเป็นต้องมีการเก็บสำรองข้อมูลและโปรแกรมที่ใช้อย่างสม่ำเสมอ
        ก่อนที่จะใช้ แผ่นจานแม่เหล็กเก็บข้อมูล จะต้องผ่านขั้นตอนของการ ฟอร์แมต (Format) ก่อน เพื่อเตรียมแผ่นจานแม่เหล็กให้พร้อมสำหรับเครื่องรุ่นที่จะใช้งาน (เช่น เครื่อง PC และ Mac จะมีฟอร์แมตที่ต่างกันแต่สามารถใช้แผ่นจานแม่เหล็กรุ่นเดียวกันได้) โดยหัวอ่านและบันทึกจะเขียนรูปแบบของแม่เหล็กลงบนผิวของแผ่นจานแม่เหล็ก เพื่อให้การบันทึกข้อมูลลงแผ่นจานแม่เหล็กในภายหลังทำตามรูปแบบดังกล่าว การฟอร์แมตแผ่นจานบันทึกจัดเป็นงานพื้นฐานหนึ่งของระบบปฏิบัติการ คอมพิวเตอร์
        ข้อมูลจะถูก บันทึกลงบนจานแม่เหล็กตามรูปแบบที่ได้ฟอร์แมตไว้แล้ว คือแบ่งในแนววงกลมรอบแกนหมุนเป็นหลาย ๆ วง เรียกว่า แทร็ก (Track) แต่ละแทร็กจะถูกแบ่งออกในแนวของขนมเค็กเรียกว่าเซกเตอร์ (Sector) และถ้ามีเซกเตอร์มากกว่าหนึ่งเซกเตอร์รวมกันเรียกว่า คลัสเตอร์ (Cluster) นอกจากนี้ในระบบคอมพิวเตอร์ส่วนมากจะมีตารางสำหรับจัดการข้อมูลในแผ่นจานแม่ เหล็ก ซึ่งมีหน้าที่เก็บตำแหน่งแทร็กและเซกเตอร์ของข้อมูลที่อยู่ภายในจานแม่เหล็ก เรียกตารางนี้ว่า ตารางแฟต (FAT หรือ File Allocation Table) ซึ่งตารางนี้ทำให้คอมพิวเตอร์สามารถค้นหาและจัดการกับข้อมูลได้อย่างรวดเร็ว
       ในปัจจุบันมี จานแม่เหล็กที่ได้รับความนิยมอย่างสูงอยู่สองชนิด คือ ฟลอปปี้ดิสก์ (Floppy Disk) และ ฮาร์ดดิสก์ (Hard Disk) โดยเครื่องไมโครคอมพิวเตอร์ที่จำหน่ายในปัจจุบันจะมีดิสก์ไดร์ฟและ ฮาร์ดดิสก์ติดมาด้วยเสมอ 
ฟลอปปี้ดิสก์และดิสก์ไดร์ฟ (Floppy Disk and Disk Drive)
        ฟลอปปี้ดิสก์หรือที่บางครั้ง นิยมเรียกว่าดิสก์เกตต์ (Diskette) เป็นแผ่นพลาสติกวงกลม ในปัจจุบันนิยมใช้ขนาด 3.5 นิ้ว (วัดจากเส้นรอบวงของวงกลม) ซึ่งบรรจุอยู่ในพลาสติกแบบแข็งรูปสี่เหลี่ยม และสามารถอ่านได้ด้วยดิสก์ไดร์ฟ เครื่องไมโครคอมพิวเตอร์ในปัจจุบันนี้ส่วนมากจะมีดิสก์ไดร์ฟอย่างน้อยครึ่ง ไดร์ฟเสมอ ดิสก์ไดร์ฟมีหน้าที่สองอย่างคือ อ่านและบันทึก โดยการอ่านมีหลักการทำงานคล้ายกับการเล่นซีดีเพลง ส่วนการบันทึกนั้นมีหลักการทำงานคล้ายกับการบันทึเสียงลงในเทปบันทึกเสียง ต่างกันก็ตรงที่ผู้ใช้ไม่ต้องกดปุ่มใด ๆ เมื่อต้องการบันทึกข้อมูล เพราะโปรแกรมที่ใช้งานจะจัดการให้โดยอัตโนมัติ แผ่นดิกส์เกตต์จะมี แถบป้องกันการบันทึก (Write-protection) อยู่ด้วย ผู้ใช้สามารถเปิดแถบนี้เพื่อป้องกันไม่ให้มีการบันทึกข้อมูลอื่นทับไปหรือลบ ทิ้งข้อมูล
        จำนวนข้อมูลที่เก็บอยู่ใน แผ่นดิสก์เกตต์ จะขึ้นอยู่กับความหนาแน่นของสารแม่เหล็กบนผิวของแผ่นโดยสามารถแบ่งออกเป็น สองชนิด คือ ดิสก์ความจุสองเท่า (Double density) ซึ่งปัจจุบันไม่นิยมใช้แล้ว ส่วนอีกชนิดหนึ่งคือ ดิสก์ความจุสูง (High density) ซึ่งจะเก็บข้อมูลได้มากกว่าดิสก์ที่มีความจุเป็นสองเท่าและเป็นดิสก์ที่นิยม ใช้งานกันอยู่ทั่วไป
        นอกจากนี้ ในปัจจุบันจะมีดิสก์เกตต์แบบพิเศษที่มีความจุสูงถึง 120 MB ต่อแผ่น ซึ่งใช้เทคโนโลยีทางด้าน Laser เรียกว่า Laser Servo (LS) ช่วยให้สะดวกในการเก็บแฟ้มข้อมูลขนาดใหญ่หรือมีปริมาณมากได้ในแผ่นเพียงแผ่น เดียว รวมทั้งสามารถอ่านดิสก์เกตต์ 720 KB และ 1.44 MB ได้ โดยมีอัตราการโอนถ่ายข้อมูลเร็วกว่าดิสก์เกตต์ปกติถึง 5 เท่า

ฮาร์ดดิสก์ (Hard Disk)
        มีหลักการทำงานคล้ายกับฟอลป ปี้ดิสก์ แต่ฮาร์ดดิสก์ทำมาจากแผ่นโลหะแข็งเรียกว่า Platters ทำให้เก็บข้อมูลได้มากและทำงานได้รวดเร็ว ฮาร์ดดิสก์ส่วนมากจะถูกยึดติดอยู่ภายในเครื่องคอมพิวเตอร์ แต่ก็มีบางรุ่นที่เป็นแบบ เคลื่อนย้ายได้ (Removable Disk) โดยจะเป็นแผ่นจานแม่เหล็กเพียงแผ่นเดียวอยู่ในกล่องพลาสติกบาง ๆ มีลักษณะคล้ายกับฟอลปปี้ดิสก์ ตัวอย่างเช่น Jaz หรือ Zip Disk จาก lomega หรือ Syjet จาก Syquest ซึ่งสามารถเก็บข้อมูลได้ตั้งแต่ 1 จิกะไบต์ขึ้นไป ในแผ่นขนาดประมาณ 3.5 นิ้ว เท่านั้น และตัวไดร์ฟจะมีทั้งรุ่นที่ต่อกับคอมพิวเตอร์ทางพอร์ตขนานหรือ SCSI
        ฮาร์ดดิสก์ที่นิยมใช้กับ เครื่องไมโครคอมพิวเตอร์ในปัจจุบัน จะประกอบด้วยจานแม่เหล็กหลาย ๆ แผ่น และสามารถบันทึกข้อมูลได้ทั้งสองหน้าของผิวจานแม่เหล็ก โดยที่ทุกแทร็ก (Track) และ เซกเตอร์ (Sector) ที่มีตำแหน่งตรงกันของฮาร์ดดิสก์ชุดหนึ่งจะเรียกว่า ไซลินเดอร์ (Cylinder)
        แผ่นจานแม่เหล็กของ ฮาร์ดดิสก์นั้นหมุนเร็วมาก โดยที่หัวอ่านและบันทึกจะไม่สัมผัสกับผิวของแผ่นจานแม่เหล็ก ดังนั้นจึงอาจมีความผิดพลาดหรือเสียหายเกิดขึ้นได้ถ้ามีบางสิ่งอย่างเช่น ฝุ่น หรือควันบุหรี่ กีดขวางหัวอ่านและบันทึก เพราะอาจทำให้หัวอ่านและบันทึกกระแทรกกับผิวของแผ่นจานแม่เหล็ก
        การที่ฮาร์ดดิสก์มี ประสิทธิภาพและความจุที่สูง เนื่องจากฮาร์ดดิสก์หนึ่งชุดประกอบด้วยแผ่นจานแม่เหล็กจำนวนหลายแผ่นทำให้ เก็บข้อมูลได้มากกว่าฟลอปปี้ดิสก์ โดยฮาร์ดดิสก์ในปัจจุบันจะมีความจุเริ่มตั้งแต่ 10 GB ขึ้นไป นอกจากนี้ ฮาร์ดดิสก์จะหมุนด้วยความเร็วสูงมาก คือตั้งแต่ 5,400 รอบต่อนาทีขึ้นไป ทำให้สามารถอ่านข้อมูลได้อย่างรวดเร็ว ฮาร์ดดิสก์รุ่นใหม่ ๆ ส่วนมากจะมี ความเร็วในการอ่านข้อมูลเฉลี่ย (Averge access time) อยู่ต่ำกว่า 10 มิลลิวินาที (mis)
        การเชื่อมต่อฮาร์ดดิสก์กับ แผงวงจรหลักจะต้องมี ส่วนเชื่อมต่อฮาร์ดดิสก์ (Hard disk interface) ซึ่งจะมีวงจรมาตรฐานที่ทั้งแผงวงจรหลักและฮาร์ดดิสก์รู้จัก ทำให้ข้อมูลสามารถส่งผ่านระหว่างแผงวงจรหลักและฮาร์ดดิสก์ได้ มาตรฐานส่วนเชื่อมต่อฮาร์ดดิสก์ที่นิยมใช้ในปัจจุบันคือ EIDE (Enhanced Integrated Drive Electronics) และ SCSI (Small Computer System Interface)
 
3. ออปติคัลดิสก์ (Optical Disk)
        มีหลักการทำ งานคล้ายกับการเล่นซีดี (CD) เพลง คือใช้เทคโนโลยีของแสงเลเซอร์ ทำให้สามารถเก็บข้อมูลได้จำนวนมหาศาลในราคาไม่แพงนัก
        ในปัจจุบันจะมีออปติคอลอยู่หลายแบบซึ่งใช้เทคโนโลยีที่แตกต่างกันไป คือ
ซีดีรอม (CD-ROM หรือ Computer Disk Read Only Memory)
        แผ่นซีดีรอมจะมีลักษณะคล้าย ซีดีเพลงมาก สามารถเก็บข้อมูลได้สูงถึง 700 เมตร เมกะไบต์ต่อแผ่น การใช้งานแผ่นซีดีรอมจะต้องมีเครื่องคอมพิวเตอร์ที่มีตัวซีดีรอมไดร์ฟ (CD-ROM Drive) ซึ่งจะมีหลายชนิดขึ้นกับความเร็วในการทำงาน ซีดีรอมไดร์ฟรุ่นแรกสุดนั้นมีความเร็วในการอ่านข้อมูลที่ 150 กิโลไบต์ต่อวินาที เรียกว่ามีความเร็ว 1 เท่าหรือ 1 x ซีดีรอมไดร์ฟรุ่นหลัง ๆ จะอ้างอิงความเร็วในการอ่านข้อมูลจากรุ่นแรก เช่น ความเร็ว 2 เท่า (2 x ) ความเร็ว 4 เท่า (4x) ไปจนถึง 50 เท่า (50 x ) เป็นต้น โดยปัจจุบันนี้ซีดีรอมไดร์ฟที่มีอยู่ในท้องตลาดจะมีความเร็วตั้งแต่สามสิบ เท่าขึ้นไป ข้อจำกัดของซีดีรอมคือสามารถบันทึกได้เพียงครั้งเดียวด้วยเครื่องมือเฉพาะ เท่านั้น จากนั้นจะไม่สามารถเปลี่ยนแปลงข้อมูลเหล่านั้นได้
        ซีดีรอมได้รับความนิยมใช้ เป็นสื่อเก็บข้อมูลสำหรับอ่านอย่างเดียวเป็นอย่างมาก เช่น ซอฟต์แวร์ เกมส์ พจนานุกรม แผนที่โลก หนังสือ ภาพยนตร์ เป็นต้น ซึ่งในปัจจุบันซอฟต์แวร์ต่าง ๆ จะมาในรูปของซีดีรอมเป็นหลัก เนื่องจากสะดวกต่อการติดตั้งลงฮาร์ดดิสก์ ไม่ต้องทำการเปลี่ยนแผ่นบ่อย ๆ โอกาสเสียมีน้อยและต้นทุนต่ำ
        การบันทึกข้อมูลลงในแผ่นซีดี รอม ปกติแล้วต้องใช้เครื่องซึ่งมีราคาแพงมาก แต่ในปัจจุบันมีแผ่นซีดีรอมที่เรียกว่า ซีดีอาร์ (CD-R หรือ CD Recordable) ซึ่งสามารถบันทึกข้อมูลลงในแผ่นด้วยซีดีอาร์ไดร์ฟ (CD-R drive) ที่มีราคาไม่สูงนัก และนำแผ่นซีดีอาร์ที่มีข้อมูลบันทึกไว้ไปอ่านด้วยซีดีรอมไดร์ฟปกติได้ทันที
        ซีดีอาร์ไดร์ฟสามารถบันทึก แผ่นซีดีอาร์ให้เป็นได้ทั้งซีดีรอมหรือซีดีเพลง (Audio CD) และเก็บบันทึกข้อมูลได้ประมาณ 600-900 เมกะไบต์ในหนึ่งแผ่น (ถ้าเก็บข้อมูลนั้นในแผ่นดิสก์เกตต์จะต้องใช้หลายร้อยแผ่น) ทำให้เหมาะกับการนำมาจัดเก็บข้อมูลทางด้าน มัลติมีเดีย (Multimedia) และยังมีการนำมาใช้บันทึกเป็น แผ่นต้นฉบับ (Master Disk) เพื่อนำไปผลิตแผ่นซีดีจำนวนมากต่อไป
        ความเร็วของไดร์ฟซีดีอาร์จะ ระบุโดยใช้ตัวเลขสองตัวคือความเร็วในการเขียนแผ่นและความเร็วในการอ่านแผ่น คั่นด้วยเครื่องหมาย X ซึ่งหมายถึงความเร็วคิดเป็นจำนวนเท่าของ 150 กิโลไบต์ต่อวินาที เช่น 24 x 40 หมายถึง ไดร์ฟซีดีอาร์นั้นสามารถเขียนแผ่นด้วยความเร็ว 24 เท่า (150 x 24 = 3600 กิโลไบต์ต่อวินาที) และอ่านแผ่นด้วยความเร็ว 40 เท่า (150x 40 = 6000 กิโลไบต์ต่อวินาที)
        ในปัจจุบันจะมีไดร์ฟแบบ ซีดีอาร์ดับเบิลยู (CD-RW Drive) ที่ใช้สำหรับบันทึกข้อมูลลงบนแผ่นให้ไดร์ฟและแผ่น CD-RW ซึ่งเป็นแผ่นซีดีพิเศษที่สามารถลบแล้วบันทึกใหม่ได้คล้ายกับการบันทึกบนแผ่น ดิสก์เกตต์ ทำให้ไดร์ฟและแผ่น CD-RW เริ่มได้รับความนิยมมากขึ้นเรื่อย ๆ อีกทั้งไดร์ฟ CD-RW ยังสามารถทำการบันทึกข้อมูลลงแผ่น CD-R ได้ (เขียนได้ครั้งเดียวไม่สามารถลบได้เช่นเดียวกับการเขียนด้วยไดร์ฟซีดีอาร์) ทำให้สะดวกกับการเลือกบันทึก โดยกรณีที่ต้องการเก็บข้อมูลที่ไม่การเปลี่ยนแปลงแล้ว ก็สามารถบันทึกลงแผ่นซีดีอาร์ที่มีราคาถูกกว่า และสำหรับข้อมูลที่ยังมีการเปลี่ยนแปลงบ่อย ๆ ก็สามารถบันทึกลงแผ่น CD-RW ได้
        ความเร็วของไดร์ฟซีดีอาร์ดับ เบิลยูจะระบุโดยใช้ตัวเลขสามตัว คือ ความเร็วในการเขียนแผ่นแบบซีดีอาร์ ความเร็วในการลบและเขียนซ้ำบนแผ่นซีดีอาร์ดับเบิ้ลยู และความเร็วในการอ่านแผ่น คั่นด้วยเครื่องหมาย x เช่น 24 x10x40 หมายถึงไดร์ฟซีดีอาร์ดับเบิลยูเครื่องนั้นสามารถเขียนแผ่นด้วยความเร็ว 24 เท่า (150 x 24 = 3600 กิโลไบต์ต่อวินาที) ลบและเขียนซ้ำด้วยความเร็ว 10 เท่า (150 x10=1500 กิโลไบต์ต่อวินาที) และอ่านแผ่น ด้วยความเร็ว 40 เท่า ( 150x40=6000 กิโลไบต์ต่อวินาที)

วอร์มซีดี (WORM CD หรือ Write Once Read Many CD)
        เป็นซีดีที่ผู้ใช้สามารถ บันทึกข้อมูลลงในแผ่นวอร์มซีดีได้หนึ่งครั้ง และสามารถอ่านข้อมูลที่บันทึกไว้ขึ้นมากี่ครั้งก็ได้ แต่จะไม่สามารถเปลี่ยนแก้ไขข้อมูลที่เก็บไปแล้วได้อีก แผ่นวอร์มซีดีสามารถเก็บข้อมูลได้ตั้งแต่ 600 เมกะไบต์ ไปจนถึงมากกว่า 3 จิกะไบต์ ขึ้นกับชนิดของวอร์มซีดีที่ใช้งาน
        วอร์มซีดีจะมีจุดด้อยกว่าซี ดีรอมในเรื่องของการไม่มีมาตรฐานที่แน่นอน นั่นคือแผ่นวอร์ม ซีดีจะต้องใช้กับเครื่องอ่านรุ่นเดียวกับที่ใช้บันทึกเท่านั้น ทำให้มีการใช้งานในวงแคบ โดยมากจะนำมาใช้ในการเก็บสำรองข้อมูลเท่านั้น
เอ็มโอดิสก์ (MO หรือ Magneto Optical disk)
        เป็นระบบที่ใช้หลักการของ สื่อที่ใช้สารแม่เหล็ก เช่น ฮาร์ดดิสก์ กับสื่อที่ใช้แสงเลเซอร์ เช่น ออปติคัลดิสก์เข้าด้วยกัน โดย เอ็มโอไดร์ฟ จะใช้แสงเลเซอร์ช่วยในการบันทึกและอ่านข้อมูล ทำให้สามารถอ่านและบันทึกแผ่นกี่ครั้งก็ได้คล้ายกับฮาร์ดดิสก์ เคลื่อนย้ายแผ่นได้คล้ายฟลอปปี้ดิสก์ มีความจุสูงมากคือตั้งแต่ 200 MB ขึ้นไป รวมทั้งมีความเร็วในการใช้งานที่สูงกว่าฟลอปปี้ดิสก์และซีดีรอม แต่จะช้ากว่าฮาร์ดดิสก์
        ข้อดีอีกประการของเอ็มโอ ดิสก์คือ ข้อมูลที่เก็บอยู่ในเอ็มโอดิสก์จะปลอดภัยจากสนามแม่เหล็ก ต่างกับฟลอปปี้ดิสก์และฮาร์ดิสก์ เพราะสนามแม่เหล็กเพียงอย่างเดียวไม่มีความร้อนจากแสงเลเซอร์จะไม่สามารถ เปลี่ยนแปลงข้อมูลได้ และการที่ใช้แสงเลเซอร์ช่วยในการอ่านและบันทึกข้อมูลนั้น ทำให้หัวอ่านบันทึกข้อมูลไม่จำเป็นต้องเข้าใกล้กับผิวของแผ่นดิสก์เหมือนกับ ฮาร์ดดิสก์ จึงช่วยลดความผิดพลาดที่เกิดจาก การล้มเหลว (Crash) ของหัวอ่าน โดยดิสก์แบบเอ็มโอสามารถมีอายุการใช้งานได้ยาวนานกว่า 30 ปีทีเดียว ข้อเสียที่สำคัญของเอ็มโอดิสก์ คือราคาเครื่องขับแผ่นเอ็มโอจะเกิดการทำงานสองขั้นตอน คือลบข้อมูลออกแล้วจึงเขียนข้อมูลใหม่เข้าไป
ดีวีดี (DVD หรือ Digital Versatile Disk )
        เป็นเทคโนโลยีใหม่ล่าสุดที่ เริ่มได้รับความนิยมอย่างมากในปัจจุบัน แผ่นดีวีดีสามารถเก็บข้อมูลได้ต่ำสุดที่ 4.7 จิกะไบต์ ซึ่งเพียงพอสำหรับเก็บภาพยนตร์เต็มเรื่องด้วยคุณภาพสูงสุดทั้งภาพและเสียง ( ในขณะที่ CD-ROM หรือ Laser Disk ที่นิยมใช้เก็บภาพยนตร์ในปัจจุบันต้องใช้หลายแผ่น) ทำให้เป็นที่คาดหมายว่าดีวีดีจะมาแทนที่ทั้งซีดีรอม เลเซอร์ดิสก์หรือแม้กระทั่งวิดีโอเทป
        ข้อกำหนดของดีวีดีจะสามารถมี ความจุได้ตั้งแต่ 4.7 GB ถึง 17 GB และมีความเร็วในการเข้าถึง (Access time) อยู่ที่ 600 กิโลไบต์ต่อวินาที ถึง 1.3 เมกะไบต์ต่อวินาที รวมทั้งสามารถอ่านแผ่นซีดีรอมแบบเก่าได้ด้วย และยังมีข้อกำหนดสำหรับเครื่องรุ่นที่สามารถอ่านและเขียนแผ่นดีวีดีได้ในตัว เช่น DVD-R(DVD Recordable) ซึ่งสามารถบันทึกข้อมูลได้หนึ่งครั้ง DVD-ROM ซึ่งสามารถบันทึกและลบข้อมูลได้เช่นเดียวกับดิสก์เกต และ DVD-RW ซึ่งสามารถบันทึกและลบข้อมูลได้หลายครั้ง แต่ต้องทำทั้งแผ่นในคราวเดียว เป็นต้น

4. ส่วนเชื่อมต่ออุปกรณ์ (Peripheral Interface)
1. ยูเอสบี (USB หรือ Universal Serial Bus)
        เป็นส่วนเชื่อมต่อที่ใช้หลัก การของบัสแบบอนุกรมที่ได้รับความนิยม และเป็นมาตรฐานที่ใช้กันมากที่สุดในปัจจุบัน ส่วนเชื่อมต่อยูเอสบีจะเป็นบัสอเนกประสงค์สำหรับเชื่อมต่ออุปกรณ์ความเร็ว ต่ำทั้งหมดเข้าพอร์ตชนิดต่าง ๆ ด้านหลังเครื่อง จะเปลี่ยนมาเป็นการเข้ากับพอร์ตยูเอสบีเพียงพอร์ตเดียว อุปกรณ์ที่ต่อทีหลังจะใช้วิธีต่อเข้ากับพอร์ตยูเอสบีของอุปกรณ์ก่อนหน้าแบบ เรียงไปเป็นทอด ๆ (Daisy chain) ซึ่งสามารถต่อได้สูงสุดถึง 127 อุปกรณ์ และสายเชื่อมระหว่างอุปกรณ์ยาวได้ถึง 5 เมตร
        อุปกรณ์ที่เป็นแบบยูเอสบีจะ สนับสนุนการถอดหรือเปลี่ยนอุปกรณ์โดยไม่ต้องปิดเครื่องคอมพิวเตอร์ก่อน (Hot Swapping) รวมทั้งสนับสนุนการใช้งานแบบเสียบแล้วใช้ได้ทันที (Plug and Play) โดยส่วนเชื่อมต่อแบบยูเอสบีที่ใช้ในปัจจุบันจะใช้มาตรฐาน USB 1.1 ที่มีความเร็ว 2 ระดับ คือ 1.5 เมกะบิตต่อวินาที และ 12 เมกะบิตต่อวินาที ในขณะที่มาตรฐานรุ่นล่าสุดคือ USB 2.0 จะสามารถมีความเร็วได้ถึง 480 Mbps ซึ่งทำให้สามารถรับส่งข้อมูลคุณภาพและเสียงจำนวนมาก ๆ ได้
2. อินฟราเรด (IrDa Port)
        เป็นมาตรฐานส่วนเชื่อมต่อจาก Infrared Data Association(IrDa) ซึ่งเป็นการรวมตัวของกลุ่มผู้ผลิตอุปกรณ์เพื่อพัฒนามาตรฐานในการส่งผ่าน ข้อมูลผ่านคลื่นแสงอินฟราเรด ในปัจจุบัน ส่วนเชื่อมต่อแบบอินฟราเรดได้รับการติดตั้งในอุปกรณ์จำนวนมาก เช่น เครื่องพิมพ์ เครื่องคอมพิวเตอร์โน้ตบุค พีดีเอ โทรศัพท์เคลื่อนที่ เป็นต้น เนื่องจากส่วนเชื่อมต่ออินฟราเรดมีข้อดีคือ ไม่ต้องใช้สายในการเชื่อมต่อ ทำให้สะดวกกับการใช้งานในอุปกรณ์แบบพกพา อีกทั้งส่วนเชื่อมต่ออินฟราเรดยังมีค่าใช้จ่ายที่ต่ำมากเมื่อเทียบกับ เทคโนโลยีไร้สายแบบอื่น ข้อจำกัดของส่วนเชื่อมต่อประเภทนี้คือระยะห่างระหว่างอุปกรณ์จะต้องไม่เกิน 1-3 เมตร และต้องไม่มีสิ่งกีดขวางในระหว่างอุปกรณ์ที่ใช้งาน

3. อุปกรณ์พีซีการ์ด (PC CARD)
        เทคโนโลยีพีซีการ์ดเป็นเทคโนโลยีซึ่งเกิดจากมาตรฐาน PCMCIA (The Personal Computer Memory Card International Association) ซึ่ง เป็นมาตรฐานในการออกแบบฮาร์ดแวร์และซอฟต์แวร์สำหรับอุปกรณ์ที่มีขนาดเท่ากับ นามบัตร โดยอุปกรณ์ดังกล่าวอาจเป็นได้ทั้งอุปกรณ์หน่วยความจำ ตลอดจนอุปกรณ์รับหรือแสดงผลต่าง ๆ
        อุปกรณ์คอมพิวเตอร์แบบพีซี การ์ดจะใช้พลังงานน้อย ทนทานต่อการใช้งาน มีขนาดเล็กและน้ำหนักเบา ทำให้มีความเหมาะสมอย่างยิ่งที่จะทำงานร่วมกับคอมพิวเตอร์ที่ใช้พลังงานจาก แบตเตอรี่ และต้องการพกพาไปยังที่ต่าง ๆ เช่น โน้ตบุค และพีดีเอ เป็นต้น นอกจากนี้ อุปกรณ์พีซีการ์ดยังมีการนำไปประยุกต์ใช้อย่างกว้างขวางกับอุปกรณ์ประเภท ต่าง ๆ เช่น กล้องดิจิตอล อุปกรณ์บันทึกข้อมูล ตลอดจนโทรศัพท์เคลื่อนที่ เป็นต้น
        อุปกรณ์พีซีการ์ดสามารถแบ่ง ได้เป็น 3 ชนิด โดยทั้ง 3 ชนิดจะมีขนาดความกว้างและความยาวประมาณเท่ากับบัตรเครดิต รวมทั้งใช้การเชื่อมต่อด้วยคอนเน็คเตอร์แบบ 68 เข็มเหมือนกัน แต่จะแตกต่างกันที่ความหนา คือ
PC Card Type l จะมีความหนา 3.3 มิลลิเมตร นิยมใช้กับอุปกรณ์หน่วยความจำ เช่น RAM, Flash Memory และ SRAM เป็นต้น
PC Card Typd ll จะมีความหนา 5.0 มิลลิเมตร นิยมใช้กับอุปกรณ์ Input/Output เช่น แฟกซ์/โมเด็ม การ์ด LAN เป็นต้น
PC Card Type lll มีความหนา 10.5 มิลลิเมตร จะใช้กับอุปกรณ์ที่มีส่วนประกอบค่อนข้างหนา เช่นอุปกรณ์บันทึกข้อมูลประเภทฮาร์ดดิสก์ เป็นต้น

 5. ยูพีเอส (UPS)
        ยูพีเอส หรือ Uninterruptible Power Supply เป็นอุปกรณ์สำหรับจ่ายกระแสไฟฟ้าสำรองจากแบตเตอรี่ เพื่อเป็นแหล่งพลังงานฉุกเฉินในกรณีเกิดปัญหากับระบบไฟฟ้าหลัก เช่น ไฟดับ ไฟตก ไฟเกิน เป็นต้น โดยปกติแล้วยูพีเอสจะสามารถจ่ายพลังงานให้เครื่องคอมพิวเตอร์และอุปกรณ์ต่าง ๆ ทำงานได้ต่ออีกหลายนาทีหลังจากไฟฟ้าดับ ทำให้ผู้ใช้สามารถจัดเก็บข้อมูลหรือทำ ขั้นตอนปิดระบบ (Shutdown) ให้เรียบร้อย และหากเป็นยูพีเอสที่มีกำลังไฟฟ้าสูงก็จะสามารถจ่ายกระแสไฟฟ้าให้ใช้งานได้ หลายชั่วโมง นอกจากนี้ในปัจจุบัน จะมียูพีเอสซึ่งมีซอฟต์แวร์มาช่วยในการจัดเก็บข้อมูลและปิดระบบโดยอัตโนมัติ เมื่อระบบไฟฟ้ามีปัญหา ซึ่งจะมีประโยชน์ในกรณีที่ผู้ใช้ไม่ได้อยู่ใกล้เครื่องคอมพิวเตอร์ในขณะนั้น
ยูพีเอสสามารถแบ่งออกได้เป็นสองประเภท คือ
        Standby Power systems จะเป็นระบบยูพีเอสที่ในเวลาปกติจะให้อุปกรณ์ต่าง ๆ ใช้พลังงานจากระบบไฟฟ้าโดยตรง แต่จะคอยตรวจสอบพลังงานไฟฟ้าและทำการเปลี่ยนไปใช้พลังงานจากแบตเตอรี่ทันที ที่ตรวจพบปัญหา จุดด้อยคือการเปลี่ยนอาจใช้เวลาหลายมิลลิวินาที ซึ่งช่วงเวลานี้เครื่องคอมพิวเตอร์จะไม่ได้รับพลังงานไฟฟ้า ทำให้อาจเกิดปัญหากับอุปกรณ์บางอย่างที่มีความไวสูง มีข้อดีคือราคาต่ำและสูญเสียพลังงานไฟฟ้าน้อยมาก บางครั้งอาจเรียกระบบนี้ว่า Line-interactive UPS
        On-line UPS systems เป็นระบบยูพีเอสที่คอยจ่ายพลังงานไฟฟ้าให้กับอุปกรณ์ต่าง ๆตลอดเวลาไม่ว่าระบบไฟฟ้าหลักจะมีปัญหาหรือไม่ ทำให้ได้พลังงานไฟฟ้าที่มีคุณภาพสูงอยู่ตลอดเวลา มีข้อเสียคือราคาแพง และมีการสูญเสียพลังงานไฟฟ้าไปกับการแปลงไฟฟ้าตลอดเวลา รวมทั้งมีอายุการใช้งานสั้นกว่าด้วย บางครั้งอาจเรียกระบบนี้ว่า Double Conversion UPS เนื่องจาก UPS ประเภทนี้จะต้องทำการแปลงไฟฟ้ากระแสสลับจากแหล่งจ่ายไฟไปเป็นกระแสตรง และแปลงกลับมาเป็นกระแสสลับให้อุปกรณ์คอมพิวเตอร์ใช้อีกครั้งหนึ่ง
 
6. แบตเตอรี่แบบเติมประจุ (Rechargeable battery)
        แบตเตอรี่แบบ เติมประจุ ได้รับความนิยมมาใช้ในอุปกรณ์แบบพกพา เช่น เครื่องคอมพิวเตอร์โน้ตบุค เครื่องพีดีเอ โทรศัพท์เคลื่อนที่ เป็นต้น เนื่องจากแบตเตอรี่รุ่นใหม่ ๆ สามารถใช้งานได้อย่างยาวนาน และสามารถเติมประจุซ้ำ ๆ ได้หลายร้อยครั้ง ทำให้ประหยัดกว่าการใช้แบตเตอรรี่แบบใช้แล้วทิ้งเป็นอย่างมาก นอกจากนี้ บางรุ่นยังสามารถรายงานระดับพลังงานที่เหลืออยู่เพื่อให้ผู้ใช้ทราบได้ว่า สามารถใช้งานอุปกรณ์ชิ้นนั้นได้อีกนานเท่าใด
แบตเตอรี่แบบเติมประจุที่ได้รับความนิยมในปัจจุบัน สามารถแบ่งเป็นสามประเภท คือ
NiCD battery แบตเตอรี่แบบนิกเกิลแคดเมียม (Nickel Cadmium) เป็นแบตเตอรี่ที่มีราคาถูก สามารถทำการประจุซ้ำได้ประมาณ 700-1000 ครั้ง แต่ แบตเตอรี่ประเภทนี้จะสามารถใช้งานได้ไม่นานนัก และมีปัญหา Memory effect ทำให้ต้องทำการใช้งานให้ประจุหมดทุกครั้งก่อนที่จะทำการเติมประจุใหม่
NiMH battery แบตเตอรี่แบบนิกเกิลเมตัลไฮไดร์ด (Nichel Metal Hydride) เป็นแบตเตอรี่ที่ได้รับความนิยมอย่างมาก เนื่องจากให้พลังงานที่ยาวนานกว่าแบบ NicD ประมาณ 40-50 เปอร์เซ็นต์ อีกทั้งไม่มีปัญหา Memory effect ทำสามารถเติมประจุเมื่อใดก็ได้ สามารถทำการเติมประจุได้ประมาณ 500 ครั้ง ข้อเสียของแบตเตอรี่ประเภทนี้คือจะมีการสูญเสียพลังงานประมาณ 5 เปอร์เซ็นต์ทุกวันไม่ว่าจะมีการใช้งานหรือไม่ก็ตาม
Lithium-Ion battery แบตเตอรี่แบบลิเธียมไอออน (Lithium-Ion) เป็นแบตเตอรี่ที่กำลังได้รับความนิยมมากขึ้นเรื่อย ๆ เนื่องจากให้พลังงานที่สูงกว่า แบบ NiMH ประมาณ 2 เท่า ไม่มีปัญหา memory effect เติมประจุได้ประมาณ 500 ครั้ง และมีน้ำหนักที่เบา ทำให้มีความเหมาะสมในการนำมาใช้กับอุปกรณ์พกพาต่าง ๆ เป็นอย่างยิ่ง ข้อเสียของแบตเตอรี่ประเภทนี้คือราคาที่ค่อนข้างสูงกว่าประเภทอื่น ๆ พอสมควร
7. Modem (modulation-Demodulation)
        จะเป็นอุปกรณ์ ที่ใช้เชื่อมต่อกับระบบเครือข่ายภายนอกผ่าน สายโทรศัพท์ดั้งเดิม (POTS) ซึ่งปกติใช้ส่งสัญญาณเสียงเท่านั้น โมเด็มมีหน้าที่ในการแปลงสัญญาณดิจิตอลจากคอมพิวเตอร์ให้เป็นสัญญาณอนาลอก เพื่อส่งผ่านไปตามสายโทรศัพท์ และเมื่อได้รับข้อมูลก็ทำการแปลงสัญญาณอนาลอกที่ได้รับให้เป็นสัญญาณดิจิตอล เพื่อให้คอมพิวเตอร์นำไปประมวลผล ในปัจจุบันนี้ สามารถส่งผ่านโมเด็มได้ด้วยความเร็วสูงสุดตามมาตรฐาน V.90 ของ ITU ที่ 56 kbps
โมเด็มสามารถแบ่งเป็นแบบต่าง ๆ ได้คือ
•  โมเด็มภายใน (Internal MODEM) จะเป็นโมเด็มแบบเป็นการ์ดใช้เสียบกับช่องขยายเพิ่มเติมในเครื่องคอมพิวเตอร์ มีข้อดีคือราคาถูกและไม่ต้องเสียบไฟแยกต่างหาก
•  โมเด็มแบบภายนอก (External MODEM) จะเป็นกล่องสำหรับเชื่อมต่อเข้ากับเครื่องคอมพิวเตอร์ผ่านทาง พอร์ตอนุกรม (serial port) หรือ ยูเอสบี (USB) มีข้อดีคือเคลื่อนย้ายได้ง่าย และมีไฟแสดงสถานะการทำงาน
•  โมเด็มแบบกระเป๋า (Pocket MODEM) จะเป็นโมเด็มขนาดเล็กที่สามารถพกใส่กระเป๋าเสื้อได้และเสียบเข้ากับพอร์ตอนุกรม
•  โมเด็มแบบการ์ด (PCMCIA MODEM) จะเป็นโมเด็มที่มีขนาดเท่ากับบัตรเครดิตเท่านั้น นิยมใช้กับเครื่องโน้ตบุ๊คโดยเสียบผ่านช่องเสียบแบบ PCMCIA Type ll
 
8. หน่วยความจำหลัก (Main Memory Unit)
        เป็นอุปกรณ์ ที่ใช้ในการจดจำข้อมูลและโปรแกรมต่าง ๆ ที่อยู่ระหว่างการประมวลผลของคอมพิวเตอร์ บางครั้งอาจเรียกว่า หน่วยเก็บข้อมูลหลัก (Primary storage)
หน่วยความจำหลักที่นิยมใช้งานอยู่ในปัจจุบัน สามารถแบ่งอออกได้เป็น 2 ประเภท
1. หน่วยความจำหลักแบบอ่านได้อย่างเดียว (Read Only Memory)
  Sorry, your browser doesn't support Java(tm).
        เรียกสั้น ๆ ว่า รอม (ROM) เป็นหน่วยความจำที่มีคุณสมบัติในการเก็บข้อมูลไว้ได้ตลอดโดยไม่ต้องใช้ไฟฟ้า หล่อเลี้ยง (Non-Volatile) นั่นคือแม้จะปิดเครื่องไปแล้วเมื่อเปิดเครื่องใหม่ข้อมูลในรอมก็ยังอยู่ เหมือนเดิม นิยมใช้เป็นหน่วยความจำสำหรับเก็บชุดคำสั่งในการเริ่มต้นระบบ หรือชุดคำสั่งที่สำคัญ ๆ ของคอมพิวเตอร์ คำสั่งเริ่มต้นระบบจะถูกเก็บไว้ในชิปชื่อ ROM BIOS ( Basic Input / Output System) ข้อเสียของรอมคือจะไม่สามารถแก้ไขหรือเพิ่มเติมชุดคำสั่งได้ในภายหลัง รวมทั้งมีความเร็วในการทำงานช้ากว่าหน่วยความจำแบบแรม
นอกจากนี้ ในปัจจุบันยังมีรอมที่เป็นชิปพิเศษแบบต่าง ๆ อีก คือ
PROM ( Programmable Read-Only Memory)
        เป็นหน่วยความจำแบบ ROM ที่สามารถบันทึกด้วยเครื่องบันทึกพิเศษได้หนึ่งครั้ง จากนั้นจะลบหรือแก้ไข้ไม่ได้
EPROM(Erasable PROM)
        เป็นหน่วยความจำ ROM ที่ใช้แสงอัลตราไวโอเลตในการเขียนข้อมูล สามารถนำออกจากคอมพิวเตอร์ไปลบโดยใช้เครื่องมือพิเศษและบันทึกข้อมูลใหม่ได้
EEPROM (Electrically Erasable PROM)
        จะเป็นเทคโนโลยีซึ่งรวมเอา ข้อดีของรอมและแรมเข้าด้วยกัน กล่าวคือจะเป็นชิปที่ใช้ไฟฟ้าในการหล่อเลี้ยง (non-volatile) สามารถเขียน แก้ไข หรือลบข้อมูลที่เก็บไว้ได้ด้วยโปรแกรมพิเศษ โดยไม่ต้องถอดออกจากเครื่องคอมพิวเตอร์เลย ทำให้เปรียบเสมือนหน่วยเก็บข้อมูลสำรองที่มีความเร็วสูงอย่างไรก็ตาม หน่วยความจำชนิดนี้จะมีข้อด้อยอยู่ 2 ประการเมื่อเทียบกับหน่วยเก็บข้อมูลสำรอง นั่นคือราคาที่สูงและมีความจุข้อมูลต่ำกว่ามาก ทำให้การใช้งานยังจำกัดอยู่กับงานที่ต้องการความเร็วสูง และเก็บข้อมูลไม่มากนัก ตังอย่างของหน่วยความจำแบบ EEPROM ที่รู้จักกันดีคือ หน่วยความจำแบบแฟลช (Flash memory) ซึ่งนิยมนำมาใช้เก็บ BIOS ในเครื่องรุ่นใหม่ ๆ
เสริมศัพท์
ความเร็วในการเข้าถึง (Access time)
        คือเวลาที่ โปรแกรมหรืออุปกรณ์ใช้ในการหาข้อมูลให้คอมพิวเตอร์นำไปประมวล นิยมใช้เป็นค่าสำหรับบอกความเร็วของอุปกรณ์เก็บข้อมูล เช่น หน่วยความจำหลัก และหน่วยเก็บความจำสำรอง โดยหน่วยความจำหลักจะมีความเร็วอยู่ในหน่วยของ nanoseconds ( ns หรือ หนึ่งส่วนพันล้านวินาที)
        ความเร็วใน การเข้าถึงของหน่วยความจำเป็นปัจจัยสำคัญอย่างหนึ่งที่มีผลกระทบกับ ประสิทธิภาพของซีพียู โดยจะต้องมีความเร็วพอที่จะสามารถส่งข้อมูลให้ซีพียูได้ในทันทีไม่เช่น นั้นซีพียูจะต้องมีการกำหนดว่าหยุดรอระยะหนึ่งทุกครั้งที่อ่านเขียนข้อมูล จากหน่วยความจำ เรียกว่า เวทสเตท (Wait state) ซึ่งมีหน่วยเป็น วงรอบสัญญาณนาฬิกา (Clock cycle)
        ส่วนความ เร็วในการเข้าถึงของหน่วยเก็บความจำสำรอง จะเรียก ความเร็วในการเข้าถึงเฉลี่ย (Average access time ) ซึ่งประกอบด้วยเวลาที่ไดร์ฟใช้ในการหาแทร็กที่ถูกต้อง กับเวลาเฉลี่ยในการเลื่อนหัวอ่าน (average seek time) ไปยังตำแหน่งที่ต้องการ นิยมใช้เป็นหน่วยวัดความเร็วในอุปกรณ์แบบเข้าถึงข้อมูลโดยตรง (Direct access) เช่น ฮาร์ดดิสก์ เป็นต้น

2. หน่วยความจำหลักแบบแก้ไขได้ (Random Access Memory)
Sorry, your browser doesn't support Java(tm).  
        นิยมเรียก สั้น ๆ ว่า แรม (RAM) หมายถึงหน่วยความจำความเร็วสูงซึ่งเป็นที่เก็บโปรแกรมและข้อมูลใน คอมพิวเตอร์ ถ้าไม่มีหน่วยความจำความเร็วสูงนี้ โปรเซสเซอร์ก็จะทำงานไม่ได้เลย เนื่องจากความจำแรมเป็นเสมือนกระดาษทด ที่เก็บข้อมูลทุกอย่างที่โปรเซสเซอร์ใช้ในขณะกำลังทำงานอยู่ เพราะอุปกรณ์ที่เก็บข้อมูลอื่น เช่น ดิสก์ไดร์ฟ จะมีความเร็วในการอ่านและบันทึกข้อมูลช้ามาก ขณะที่ซีพียูทำงานจึงต้องทำงานกับหน่วยความจำแรมที่มีความเร็วสูงเสมอ
        โดยปกติแล้ว ถ้าคอมพิวเตอร์มีหน่วยความจำมาก ก็จะสามารถทำงานได้เร็วขึ้น เพราะมีเนื้อที่สำหรับเก็บคำสั่งของโปรแกรมต่าง ๆ ได้ทั้งหมด ไม่ต้องเรียกคำสั่งที่ใช้มาจากหน่วยเก็บข้อมูลสำรอง ซึ่งจะทำให้การทำงานช้าลงอย่างมาก แผงวงจรหลัก (Main board) ที่อยู่ในเครื่องคอมพิวเตอร์ โดยปกติจะถูกออกแบบมาให้สามารถเพิ่ม ชิปหน่วยความจำ (memory chip) ได้โดยง่าย เนื่องจากถ้าผู้ใช้ต้องทำงานกับโปรแกรมที่มีการคำนวณซับซ้อนหรือทำงานกับ ภาพกราฟิก ก็อาจจำเป็นต้องทำการเพิ่มหน่วยความจำให้มากขึ้น
        คอมพิวเตอร์ ขนาดใหญ่ส่วนมากจำเป็นต้องมีหน่วยความจำจำนวนมาก เนื่องจากคอมพิวเตอร์นี้จะมีผู้ใช้หลายคนทำงานพร้อม ๆ กัน โดยใช้หลักการของ มัลติโปรเซสซิง (Multiprocessing) ทำให้ต้องมีการแบ่งเนื้อที่ในหน่วยความจำ เพื่อเก็บโปรแกรมของผู้ใช้แต่ละคนสามารถประมวลผลไปในเวลาเดียวกันมากขึ้น

หน่วยความจำ RAM ที่นิยมใช้ในปัจจุบัน คือ
DRAM ( Dynamic RAM)
        เป็นหน่วยความจำที่มีการ ใช้งานกันมากที่สุดในปัจจุบัน จะมีวงจรคล้ายตัวเก็บประจุเพื่อจัดเก็บแต่ละบิตของข้อมูล ทำให้ต้องมีการย้ำสัญญาณไฟฟ้าเข้าไปก่อนที่จะสูญหาย เรียกว่า การรีเฟรช (Refresh) หน่วยความจำ DRAM จะมีข้อดีที่ราคาต่ำ แต่ข้อเสียคือมีความเร็วในการเข้าถึง (Access time) ประมาณ 50 – 150 nanoseconds ซึ่งไม่สูงนักเนื่องจากต้องมีการรีเฟรชข้อมูลอยู่ตลอดเวลา ทำให้มีการนำเทคนิค ต่าง ๆ มาช่วยลดเวลาในการเข้าถึงข้อมูล และเกิด DRAM ชนิดย่อย ๆ เช่น FPM (Fast Page Mode) RAM, EDO (Extended Data Output) RAM, SDRAM (Synchronous DRAM), DDR (Double Data Rate) SDRAM และ RDRAM (Rambus DRAM) เป็นต้น
        นอกจากนี้ ยังมี DRAM แบบพิเศษซึ่งมีการปรับปรุงให้ทำงานเร็วขึ้นเพื่อใช้เป็นหน่วยความจำสำหรับ ระบบแสดงผลกราฟิก ซึ่งต้องการหน่วยความจำที่สามารถถ่ายโอนข้อมูลด้วยความเร็วสูง เช่น VRAM(Video RAM), WRAM (Window RAM), SGRAM (Synchronous Graphics RAM) และ MDRAM (Multibank RAM) เป็นต้น
SRAM (Staitc RAM)
        เป็นหน่วยความจำที่มีความ เร็วสูงและใช้พลังงานน้อยมาก เนื่องจากข้อมูลที่เก็บอยู่ใน SRAM จะคงอยู่ได้ไม่ต้องทำการ refresh ข้อมูลอยู่ตลอดเวลาเหมือน DRAM ทำให้ SRAM สามารถใช้พลังงานจากถ่านนาฬิกาในการทำงานได้ถึงหนึ่งปี มีข้อเสียคือราคาสูง ทำให้นิยมใช้ SRAM เป็น หน่วยความจำแคช (Cache memory) เพื่อเสริมความเร็วให้กับหน่วยความจำ DRAM ในระบบคอมพิวเตอร์ความเร็วสูง เนื่องจากหน่วยความจำ SRAM มีความเร็วต่ำกว่า 10 nanosecond
เสริมศัพท์
หน่วยความจำแคช (Cache memory)
        ในระบบ คอมพิวเตอร์จะมีอุปกรณ์บางส่วนที่ทำงานช้า จึงมีการใช้วีธีหน่วยความจำแบบแรมมาเพิ่มความเร็วของอุปกรณ์เหล่านั้น อันจะทำให้การทำงานของคอมพิวเตอร์โดยรวมเร็วขึ้นมาก เรียกหน่วยความจำส่วนนี้ว่า หน่วยความจำแคช (Cache memory) ซึ่งสามารถแบ่งได้เป็น 2 แบบ คือ
•  แคชสำหรับหน่วยความจำ (Memory cache) จะเป็นการใช้หน่วยความจำแรมชนิดความเร็วสูงเป็นพิเศษมาเก็บคำสั่งและข้อมูล ที่ใช้บ่อย ๆ จากหน่วยความจำแรมปกติของระบบ เพื่อลดเวลาที่ซีพียูใช้ในการอ่านหน่วยความจำแรมของระบบ ซึ่งมีความเร็วในการทำงานช้ากว่าการทำงานของซีพียูมาก
•  แคชสำหรับอุปกรณ์ (Device cache) เป็นการออกแบบเพื่อเพิ่มความเร็วในการเข้าถึงข้อมูลในอุปกรณ์อื่น ๆ เช่น หน่วยความจำสำรอง โดยจัดสรรแรมมาใช้เก็บข้อมูลและคำสั่งต่าง ๆ ที่ใช้บ่อย ๆ จากอุปกรณ์ที่มีความเร็วต่ำ เช่น ฮาร์ดดิสก์ มาไว้ในแคช ทำให้จำนวนครั้งที่ต้องทำการเรียกใช้ข้อมูลจากอุปกรณ์เหล่านั้นลดลง จึงทำงานได้รวดเร็วขึ้น นอกจากนี้ ในบางครั้งจะพบกับ หน่วยความจำแบบบัฟเฟอร์ (Buffer memory) ซึ่งเป็นแคชสำหรับอุปกรณ์แบบง่าย ๆ ทำหน้าที่พักข้อมูลจากอุปกรณ์ไว้ชั่วคราวเพื่อรอให้ซีพียูมาอ่านไปใช้ โดยไม่มีการใช้วีการที่ซับซ้อนในการเลือกว่าข้อมูลใดที่มีโอกาสสูงที่สุดที่ ซีพียูจะเรียกใช้งาน
หน่วยความจำเสมือน (Virtual Memory)
        จะเป็นวีธี ในการนำพื้นที่ของหน่วยเก็บข้อมูลสำรอง ( ส่วนมากจะเป็นฮาร์ดิสก์) มาจำลองเป็นหน่วยความจำ เนื่องจากหน่วยความจำของระบบมีจำกัดและมีราคาสูง การใช้หน่วยความจำเสมือนจะทำให้สามารถทำงานกับโปรแกรมขนาดใหญ่มาก ๆ ได้ โดยไม่มีปัญหาเรื่องหน่วยความจำไม่เพียงพอ ระบบการทำงานของหน่วยความจำเสมือนจะใช้วิธีแบ่งโปรแกรมออกเป็นส่วน ๆ และคอมพิวเตอร์จะทำการ สลับ (swap) ส่วนโปรแกรมที่ยังไม่ได้ใช้ลงไปยังหน่วยเก็บข้อมูลสำรอง และทำการสลับกลับมาในหน่วยความจำหลักเมื่อจำเป็นต้องใช้งาน หลักการของหน่วยความจำเสมือนทำให้สามารถทำงานกับโปรแกรมที่ต้องการใช้แรมไม่ ต่ำกว่า 6 เมกะไบต์ บนเครื่องที่มีแรมเพียง 4 เมกะไบต์เท่านั้น
        หน่วยความจำ ECC (Error Correction Code) หน่วยความจำ ECC จะเป็นหน่วยความจำ RAM ซึ่งมีการใช้บิตพิเศษ (Parity bit) 3 บิตในการตรวจสอบข้อมูลที่เก็บอยู่ในหน่วยความจำ หากข้อมูลที่เก็บอยู่มีข้อผิดพลาดก็จะทำการคำนวณและแก้ไขบิตที่ผิดให้โดย อัตโนมัติ